

 [image: cover]

 Learn Ruby on Rails: Book Two
Version 4.2.0, 2 August 2017
Daniel Kehoe

Contents
	Chapter 1 Version Check, Videos, and More
		1.1 Version Check
	1.2 Get the Videos

	Chapter 2 Introduction
		2.1 Is It for You?
	2.2 What To Expect
		2.2.1 About Book One
	2.2.2 What’s in This Book
	2.2.3 A Warning About Links
	2.2.4 What Comes Next
	2.2.5 Staying In Touch
	2.2.6 A Note to Reviewers and Teachers
	2.2.7 Using the Book in the Classroom
	2.2.8 Let’s Get Started

	Chapter 3 Get Help When You Need It
		3.1 Example Code
	3.2 Version Check
	3.3 Getting Help With the Book
	3.4 Getting Help With Rails
		3.4.1 Video Option
	3.4.2 Where To Go For Help?

	3.5 References
		3.5.1 RailsGuides
	3.5.2 Cheatsheets
	3.5.3 API Documentation

	3.6 Meetups, Hack Nights, and Workshops
	3.7 Pair Programming
	3.8 Pairing With a Mentor
	3.9 Code Review
	3.10 Staying Up-to-Date

	Chapter 4 Accounts You May Need
		4.1 GitHub
	4.2 MailChimp
	4.3 SendGrid
	4.4 Heroku

	Chapter 5 Get Started
		5.1 Text Editor and Terminal Applications
	5.2 Copying and Pasting Code
	5.3 Your Computer
		5.3.1 Hosted Computing

	5.4 Try the Terminal
	5.5 Installing Ruby
		5.5.1 MacOS
	5.5.2 Ubuntu Linux
	5.5.3 Hosted Computing
	5.5.4 Windows

	5.6 Your Workspace
		5.6.1 Video Option

	5.7 Understanding Version Numbers
	5.8 Ruby and Rails Version Check
	5.9 RVM
	5.10 Project-Specific Gemset

	Chapter 6 Create the Application
		6.1 Starter Applications
	6.2 Workspace Folder and RVM Gemset
	6.3 Use “Rails New” to Build the Application
	6.4 Make a Sticky Gemset
	6.5 Test the Application
		6.5.1 Launching the Web Server
	6.5.2 Errors for Linux Users
	6.5.3 Viewing in the Web Browser
	6.5.4 Watch Log Messages
	6.5.5 Multiple Terminal Windows
	6.5.6 Stop the Web Server

	6.6 Get Organized for Efficiency

	Chapter 7 The Parking Structure
		7.1 Video Option
	7.2 Project Directory
	7.3 Get to Know the Folders and Files
		7.3.1 Important Folders and Files
	7.3.2 Not-So-Important Folders and Files
	7.3.3 Folders for Testing

	7.4 The App Directory
		7.4.1 Folders of Future Importance

	Chapter 8 Time Travel with Git
		8.1 Git
	8.2 Is Git Installed?
	8.3 Is Git Configured?
	8.4 Create a Repository
	8.5 GitIgnore
	8.6 Git Workflow
		8.6.1 Untracked Files
	8.6.2 Staging
	8.6.3 Committing
	8.6.4 Git Log
	8.6.5 Repositories
	8.6.6 Pushing to GitHub

	8.7 The README

	Chapter 9 Gems
		9.1 Videos
	9.2 RubyGems
	9.3 Rails Gems
	9.4 Gems for a Rails Default Application
	9.5 Where Do Gems Live?
	9.6 Gemfile
	9.7 Gemfile for a Rails Default Application
	9.8 Adding Gems
	9.9 About the Rails Version
	9.10 Install the Gems
		9.10.1 Troubleshooting

	9.11 Git

	Chapter 10 Configure
		10.1 Configuration Security
	10.2 Videos
	10.3 About Environment Variables
	10.4 Viewing Hidden Files
	10.5 Set Environment Variables
		10.5.1 SendGrid
	10.5.2 MailChimp
	10.5.3 Owner Email
	10.5.4 Restart the Terminal Session
	10.5.5 Troubleshooting

	10.6 The Secrets File
		10.6.1 Domain Name
	10.6.2 Securing the Secrets File
	10.6.3 Troubleshooting

	10.7 Secret Key Base
	10.8 Configure Email
		10.8.1 Connect to an Email Server
	10.8.2 Perform Deliveries in Development

	10.9 Git

	Chapter 11 Static Pages and Routing
		11.1 Add a Home Page
	11.2 Routing Error
	11.3 Add an About Page
		11.3.1 Introducing TDD

	11.4 Introducing Routes
	11.5 Using the “About” Page

	Chapter 12 Request and Response
		12.1 Investigating the Request Response Cycle
		12.1.1 Inside the Browser
	12.1.2 Inside the Server

	12.2 How the Browser Works
		12.2.1 Document Object Model
	12.2.2 Rendering

	12.3 How the Application Works
		12.3.1 Video Option
	12.3.2 The Model View Controller Concept

	12.4 Remove the About Page

	Chapter 13 Dynamic Home Page
		13.1 User Story
	13.2 Routes, Model, View, and Controller
	13.3 The Name Game
	13.4 Naming Conventions
	13.5 Routing
	13.6 Model
	13.7 View
	13.8 Controller
	13.9 Scaffolding
	13.10 Test the Application
	13.11 Git

	Chapter 14 Troubleshoot
		14.1 Git
	14.2 Interactive Ruby Shell
		14.2.1 IRB for Blocks of Code
	14.2.2 Quitting IRB
	14.2.3 Learn More About IRB
	14.2.4 Beyond IRB

	14.3 Rails Console
	14.4 Rails Logger
	14.5 Revisiting the Request-Response Cycle
	14.6 The Stack Trace
	14.7 Raising an Exception
	14.8 Git

	Chapter 15 Just Enough Ruby
		15.1 Reading Knowledge of Ruby
	15.2 Ruby Example
	15.3 Ruby Keywords
		15.3.1 API Documentation

	15.4 Ruby Files
		15.4.1 Using IRB

	15.5 Whitespace and Line Endings
	15.6 Comments
	15.7 The Heart of Programming
	15.8 Assignment
	15.9 Object-Oriented Terminology
		15.9.1 Houses
	15.9.2 Vehicles
	15.9.3 Cookies
	15.9.4 Limitations of Metaphors
	15.9.5 Definitions

	15.10 Classes
	15.11 Methods
	15.12 Dot Operator
		15.12.1 Question and Exclamation Methods

	15.13 Initialize Method
	15.14 Method Parameters
	15.15 Variable
		15.15.1 Symbol

	15.16 Attributes
	15.17 Instance Variable
		15.17.1 Instance Variables in Rails

	15.18 Double Bar Equals Operator
	15.19 Conditional
	15.20 Ternary Operator
	15.21 Interpolation
	15.22 Access Control
	15.23 Hash
	15.24 Array
	15.25 Iterator
	15.26 Block
	15.27 Rails and More Keywords
	15.28 More Ruby
		15.28.1 Collaborative Learning
	15.28.2 Online Tutorials
	15.28.3 Books
	15.28.4 Newsletters
	15.28.5 Screencasts

	15.29 Git

	Chapter 16 Layout and Views
		16.1 Template Languages
	16.2 Introducing the Application Layout
	16.3 Where did all the extra HTML come from?
	16.4 Yield
	16.5 Yield Variations
	16.6 ERB Delimiters
	16.7 Introducing View Helpers
	16.8 The Rails Layout Gem
	16.9 Basic Boilerplate
	16.10 Adding Boilerplate
		16.10.1 Viewport
	16.10.2 Title and Description

	16.11 Asset Pipeline
		16.11.1 Assets Without Rails
	16.11.2 Assets With Rails

	16.12 Navigation Links
		16.12.1 Introducing Partials
	16.12.2 Introducing Link Helpers
	16.12.3 Navigation Partial
	16.12.4 Navigation Links Partial

	16.13 Flash Messages
		16.13.1 Creating Flash Messages
	16.13.2 Flash and Flash Now
	16.13.3 Explaining the Ruby Code
	16.13.4 The Flash Messages Partial

	16.14 HTML5 Elements
	16.15 Application Layout
	16.16 Simple CSS
	16.17 Test the Application
	16.18 Git

	Chapter 17 Front-End Framework
		17.1 CSS Frameworks
	17.2 JavaScript Libraries and Frameworks
	17.3 Front-End Frameworks
	17.4 CSS Preprocessing with Sass
	17.5 Bootstrap or Others?
	17.6 Graphic Design Options
	17.7 Bootstrap 3 or 4?
	17.8 Bootstrap Gem
	17.9 Rails Layout Gem with Bootstrap
	17.10 Renaming the application.css File
	17.11 The application.css.scss File
		17.11.1 A Global CSS File
	17.11.2 A Manifest File

	17.12 Bootstrap JavaScript
	17.13 Bootstrap CSS
	17.14 Using Bootstrap CSS Classes
		17.14.1 Bootstrap Grid
	17.14.2 Presentational Versus Semantic Styles
	17.14.3 Use Bootstrap Classes Directly
	17.14.4 Or Use Sass Mixins with Bootstrap

	17.15 Application Layout with Bootstrap
	17.16 Flash Messages with Bootstrap
	17.17 Navigation Partial with Bootstrap
	17.18 Navigation Links Partial
	17.19 Test the Application
	17.20 Remove the Flash Messages
	17.21 Git

	Chapter 18 Add Pages
		18.1 High Voltage Gem
	18.2 Views Folder
	18.3 “About” Page
	18.4 Contact Page
	18.5 Routing for the High Voltage Gem
	18.6 Update the Navigation Partial
	18.7 Test the Application
	18.8 Git

	Chapter 19 Contact Form
		19.1 The “Old Way” and the “Rails Way”
	19.2 User Story
	19.3 Routing
	19.4 Adding a Form to the Contact Page
	19.5 Controller
		19.5.1 Params Hash
	19.5.2 Process_form Method

	19.6 Test the Application
	19.7 The Validation Problem
	19.8 Remove the Contact Page
	19.9 Implementing the “Rails Way”
	19.10 ActiveModel
	19.11 Model
	19.12 Create a New Contact Page
	19.13 Seven Controller Actions
	19.14 Controller
		19.14.1 Mass-Assignment Vulnerabilities
	19.14.2 Private Methods

	19.15 Routing
	19.16 Change Navigation Links
	19.17 Test the Application
	19.18 Git

	Chapter 20 Send Mail
		20.1 User Story
	20.2 Implementation
	20.3 Create View Folder and Mailer
	20.4 Edit the Mailer
	20.5 Create Mailer View
	20.6 Modify Controller
	20.7 Test the Application
	20.8 Troubleshooting
		20.8.1 User Name Issues
	20.8.2 Password Issues
	20.8.3 Problems with Environment Variables

	20.9 Asynchronous Mailing
	20.10 Git

	Chapter 21 Mailing List
		21.1 User Story
	21.2 Implementation
	21.3 Gibbon Gem
	21.4 Home Page
		21.4.1 Photo Options

	21.5 Visitor Model
	21.6 Visitors Controller
	21.7 Clean Up
	21.8 Routing
	21.9 Test the Application
	21.10 Git

	Chapter 22 Deploy
		22.1 Heroku Costs
	22.2 Test the Application
	22.3 Preparing for Heroku
		22.3.1 Gemfile
	22.3.2 Asset Pipeline in Production
	22.3.3 Option to Ban Spiders
	22.3.4 Humans.txt

	22.4 Sign Up for a Heroku Account
	22.5 Heroku Toolbelt
	22.6 Heroku Create
	22.7 Enable Email
	22.8 Set Heroku Environment Variables
	22.9 Push to Heroku
	22.10 Updating the Application
	22.11 Visit Your Site
	22.12 Customizing
	22.13 Troubleshooting
	22.14 Where to Get Help

	Chapter 23 Analytics
		23.1 Segment.com
	23.2 Accounts You Will Need
	23.3 Installing the JavaScript Library
	23.4 Replace the Write Key
	23.5 Add Integration Code
	23.6 Page View Tracking with Turbolinks
	23.7 Event Tracking
	23.8 Troubleshooting
	23.9 Segment.com Integrations
	23.10 Deploy
	23.11 Improving the User Experience
	23.12 Conversion Tracking
	23.13 Enjoy What You’ve Achieved

	Chapter 24 Testing
		24.1 Why Test?
	24.2 What Are Tests?
	24.3 Scripted or Exploratory
	24.4 Regression and Acceptance
	24.5 Units and Integration
	24.6 Sample Data
	24.7 Test Doubles
	24.8 Minitest and RSpec
	24.9 Capybara, the Ghost in the Machine
	24.10 Four Phases of Feature Tests
	24.11 Four Phases of Unit Tests
	24.12 Set Up Minitest
		24.12.1 Run Tests

	24.13 Unit Test (Standard Syntax)
	24.14 Unit Test (Spec Syntax)
		24.14.1 Create a Test Class With Describe
	24.14.2 Setup Phase
	24.14.3 Do It

	24.15 Run Tests
		24.15.1 Breaking the Test

	24.16 Feature Test
		24.16.1 Feature
	24.16.2 Scenario

	24.17 Run Tests
		24.17.1 Troubleshooting
	24.17.2 Breaking the Test
	24.17.3 Using Capybara

	24.18 Other Tests
	24.19 Behavior-Driven Development
	24.20 Test-Driven Development
	24.21 Test-First Development
	24.22 Words of Encouragement

	Chapter 25 Rails Composer
		25.1 Building Starter Applications
	25.2 Build ‘Learn Rails’ in Less Than Five Minutes
	25.3 A Collection of Starter Applications
		25.3.1 Rails Bootstrap
	25.3.2 Rails Foundation
	25.3.3 Rails Mailing List with Active Job
	25.3.4 Rails OmniAuth
	25.3.5 Rails Devise
	25.3.6 Rails Devise Roles
	25.3.7 Rails Devise Pundit
	25.3.8 Other Starter Applications

	25.4 Rails Composer Options
	25.5 Try It Out

	Chapter 26 Version Notes
		26.1 Version 4.2.0
	26.2 Version 4.1.0
	26.3 Version 4.0.2
	26.4 Version 4.0.1
	26.5 Version 4.0.0
	26.6 Version 3.1.0
	26.7 Version 3.0.2
	26.8 Version 3.0.1
	26.9 Version 3.0.0
	26.10 Version 2.2.2
	26.11 Version 2.2.1
	26.12 Version 2.2.0
	26.13 Version 2.1.6
	26.14 Version 2.1.5
	26.15 Version 2.1.4
	26.16 Version 2.1.3
	26.17 Version 2.1.2
	26.18 Version 2.1.1
	26.19 Version 2.1.0
	26.20 Version 2.0.2
	26.21 Version 2.0.1
	26.22 Version 2.0.0
	26.23 Version 1.19
	26.24 Version 1.18
	26.25 Version 1.17

	Chapter 27 Credits and Comments
		27.1 Credits
		27.1.1 Kickstarter
	27.1.2 Financial Backers for the First Edition
	27.1.3 Technical Editors
	27.1.4 Editors and Proofreaders
	27.1.5 Photos

	27.2 Comments

 Chapter 1 Version Check, Videos, and More

Before you get started, I want you to have the most current version of my book. Also, I’ll tell you how to get the videos and advanced tutorials.

1.1 Version Check

If you have the PDF, ePub, or Mobi versions of the book, check the title page for the version number and look on the webpage for the learn-rails GitHub repository to make sure you have the newest version of the book.

I suggest to use the online edition as you build the tutorial application. It is always up to date.

1.2 Get the Videos

You can watch videos as you read the book. A subscription is only $19 per month (there’s also a discount when you get the video series plus advanced tutorials). It’s easy and you’ll learn more:

	Get the Videos and Advanced Tutorials

The videos are a great introduction to Rails. With the videos and the advanced tutorials, I promise there is no better way to learn Rails.

 Chapter 2 Introduction

Welcome. This is Book Two in my Ruby on Rails book series. It is written for Rails 5.1.

In this book, you’ll build a working web application so you’ll gain
hands-on experience. Along the way, you’ll practice techniques used by
professional Rails developers. And I’ll help you understand why Rails
is a popular choice for web development.

Read Book One to get the big picture that’s missing from other tutorials. Read it anywhere,
on your phone or tablet. It introduces
key concepts so you’ll have a solid foundation for continued study. You can start this book before you finish Book One.

This book (Book Two) is for hands-on learning so you’ll need your computer to follow this tutorial.

In this book, I also provide links to videos. You can get the videos along with advanced tutorials at
the tutorials.railsapps.org site.

[image: images/figures/learn-rails]
Figure 2.1: The application you will build.

2.1 Is It for You?

You don’t need to be a programmer to succeed with this book. You’ll be surprised how quickly you become familiar with the Unix command line interface and the Ruby programming language even if you’ve never tried programming before.

Book One provides a primer for the Unix command line, the terminal, and a text editor. If you have no experience with Unix commands, the terminal window, or a text editor, read Book One first. Everything else you need is self-contained in this book.

With this book, my aim is to introduce you to Rails and the techniques of web application development so you can launch a startup or begin a new career.

2.2 What To Expect

There is deep satisfaction in building an application and making it run. With this book, I’ll give you everything you need to build a real-world
Rails application. More importantly, I’ll explain everything you build,
so you understand how it works. There will be no mystery code.

When you’ve completed this tutorial, you will be ready for more advanced
self-study, including the Capstone Rails Tutorials,
textbook introductions to Rails such as Michael Hartl’s Ruby on Rails Tutorial,
or workshops and code camps that provide intensive training in Ruby on Rails.

2.2.1 About Book One

Here’s what is covered in Book One, in case you missed it.

In Book One, I explain the culture and practices of the Rails
community. I introduce the basic concepts you’ll need to understand
web application development.

Book One will teach you how to be a successful beginner. There is a roadmap, or study guide, in the “Level Up” chapter. It helps to have a map because there is so much to learn. More importantly, to become a skilled Rails developer, you’ll need to start writing code, and Book One contains a chapter, “Crossing the Chasm,” that will give you a strategy for building your own applications.

2.2.2 What’s in This Book

You’ll start coding immediately in this book. It’s a hands-on tutorial
that leads you through the code needed to build a real-world web application. Don’t
skip around in this book. The tutorial is designed to unfold in
steps, one section leading to another, until you reach the “Testing”
chapter.

You can complete this book in one long weekend, though it will take
concentration and stamina. If you work through the book over a longer
timespan, try to set aside uninterrupted blocks of two hours or more for
reading and coding, as it takes time to focus and concentrate.

2.2.3 A Warning About Links

My books are densely packed with links for background reading. If you
click every link, you’ll be a well-informed student, but you may never
finish the book! It’s up to you to master your curiosity. Follow the
links only when you want to dive deeper.

2.2.4 What Comes Next

The best way to learn is by doing; when it comes to code, that means
building applications. Hands-on learning with actual Rails
applications is the key to absorbing and retaining knowledge.

After you read this book, you’ll be able to work with the example applications from the RailsApps Project. The project provides open source
example applications for Rails developers, for free. Each application is
accompanied by a tutorial in the Capstone Rails Tutorials
series, so there’s no mystery code. Each application can be generated in a few minutes
with the Rails Composer tool, which professional
developers use to create starter applications.

The open source project is solely supported by subscriptions to the video series and sales of the
Capstone Rails Tutorials. If you get the videos or the advanced tutorials, you’ll have my sincere appreciation for your support.

2.2.5 Staying In Touch

If you obtained this book from Amazon or a download site, take a moment
to get on the mailing list for the book. I’ll let you know when I
release updates to the book.

	Get on the mailing list for the book

2.2.6 A Note to Reviewers and Teachers

This book approaches the subject differently than most introductions to
Rails. In this book, rather than
show the student how to use scaffolding, I introduce the
model-view-controller design pattern by creating the components
manually. Lastly, though every other Rails tutorial shows how to use a
database, this book doesn’t, because I want the book to be a short
introduction and I believe the basic principles of a web application
stand out more clearly without adding a database to the application. Though this tutorial is not a typical Rails introduction, I hope you’ll
agree that it does a good job in preparing Rails beginners for continued
study, whether it is a course or more advanced books.

2.2.7 Using the Book in the Classroom

If you’ve organized a workshop, course, or code camp, and would like to
assign the book as recommended reading, contact me at
daniel@danielkehoe.com to arrange
access to the book for your students at no charge.

2.2.8 Let’s Get Started

In the next chapter, we’ll learn how to get help when you need it.

 Chapter 3 Get Help When You Need It

This chapter appears in the first book in this series,
but I’ve included an expanded version here in Book Two because it is important.

3.1 Example Code

If you follow this tutorial closely, you’ll have a working application
that closely matches the example app in the
learn-rails GitHub
repository. If your application doesn’t work after following the
tutorial, compare the code to the example app in the GitHub repository,
which is known to work.

3.2 Version Check

The code in this tutorial was tested by many people and worked
flawlessly at the time this was written. The
learn-rails example
application on GitHub serves as a “reference implementation” if you have
problems. The example application is updated more frequently than the
published tutorial.

You’ll find the version number and release date on the first page of this book (under the book title). Check the learn-rails GitHub repository to find out
if you have the newest version of the book. The README page on the GitHub repo always
shows the most recent version number for the book and the tutorial application.

Don’t worry if the learn-rails GitHub repository seems complicated or difficult to understand. You’ll get to know GitHub over time and it will become familiar. For now, it is only important to know that it is there in case you have problems.

Take a moment now to look at the open issues
on GitHub to see what problems you may encounter as you work your way
through the tutorial. You can look at the closed issues
to see some of the solved problems.

If you have trouble building the application in this book, and suspect something may be out of date,
you can compare the Gemfile in the repo to
see if we’ve changed gems or specified version numbers to avoid
compatibility issues.

You can also check the
CHANGELOG
and look at recent commits to
see the current state of the application.

3.3 Getting Help With the Book

Let’s consider what to do if you encounter problems as you build the
tutorial application in this book.

If you are in a classroom, or studying in a group, ask a peer to look at
your problem. Most problems are caused by simple typos or formatting
errors. Your classmate may see what you overlooked.

Stack Overflow
provides a question-and-answer forum for readers of this book. As the
author of this book, I can’t solve your individual problems or help you
directly by email. If I did, I would not have time to create the
tutorials and videos that benefit so many people. However, I watch for questions on
Stack Overflow. Everyone benefits when solutions are made public.

	tag your questions on Stack Overflow with railsapps for extra attention

If your questions aren’t answered on Stack Overflow, try the Reddit forum:

	/r/rails

I sincerely hope you won’t encounter obstacles as you build the tutorial
application. Thousands of beginners have successfully completed the book
and, unless a gem has recently changed, you should have no problem.

Now let’s consider where to look for help when you are working on your
own Rails projects.

3.4 Getting Help With Rails

3.4.1 Video Option

Watch the six minute video if you have subscribed:

	Get Help with Rails

3.4.2 Where To Go For Help?

What will you do when you get stuck?

“Google it,” of course. But here’s a trick to keep in mind. Google has
options under “Search tools” to show only recent results from the past
year. Use it to filter out stale advice that pertains only to older
versions of Rails.

Stack Overflow is as
important as Google for finding answers to programming problems. Stack
Overflow answers are often included in Google search results, but you
can go directly to Stack Overflow to search for answers to your
questions. Like Google, answers from Stack Overflow are helpful if you
check carefully to make sure the answers are recent. Also be sure to
compare answers to similar questions; the most popular answer is not
always the correct answer to your particular problem.

Requests for advice (especially anything that provokes opinions) are
often rejected on Stack Overflow. Instead, try Reddit for advice or
recommendations. You’ll find discussion forums (“subreddits”) devoted to
Rails and
Ruby. You can also visit the
Quora question-and-answer site for topics
devoted to Rails and
Ruby.

3.5 References

Here are suggestions for the most important references.

If you feel overwhelmed by all the links, remember that you can use
this book to build the tutorial application without any additional resources. Right now, it’s important to know additional help is available when you
need it.

3.5.1 RailsGuides

The Rails Guides are Rails’s official
documentation, written for intermediate-level developers who already
have experience writing web applications. The Rails Guides are an
excellent reference if you want to check the correct syntax for Rails
code. You’ll be able to use the Rails Guides after completing this
tutorial.

3.5.2 Cheatsheets

Tobias Pfeiffer has created a useful Rails Beginner Cheat
Sheet
that provides a good overview of Rails syntax and commands.

Even better than a cheatsheet, for Mac users, is an application named
Dash that offers fingertip access to reference
documentation for Ruby, Rails, HTML, CSS, JavaScript, and many other
languages and frameworks.

3.5.3 API Documentation

The API documentation for Ruby and Rails shows every class and method. These are extremely technical documents (the only thing more technical
is reading the source code itself). The documents offer very little help
for beginners, as each class and method is considered in isolation, but
there are times when checking the API documentation is the only way to
know for certain how something works.

	Rails Documentation - official API docs

	apidock.com/rails - Rails API docs with usage notes

	apidock.com/ruby - Ruby API docs with usage notes

I recommend Dash as a tool to look up classes,
modules, and methods in Ruby and Rails. Dash is a macOS
app; use
Zeal on Linux. Dash and Zeal run offline (they
don’t need an Internet connection) so you can use them anywhere.

3.6 Meetups, Hack Nights, and Workshops

I’d like to urge you to find ways you can work with others who are
learning Rails. Peer support is really important when you face a
challenge and want to overcome obstacles.

Most large urban areas have meetups or user group meetings for Rails
developers. Try Meetup.com or google “ruby
rails (my city)”. The community of Rails developers is friendly and
eager to help beginners. If you are near a Rails meetup, it is really
worthwhile to connect to other developers for help and support. You may
find a group that meets weekly for beginners who study together.

Local user groups often sponsor hack nights or
hackathons which can be
evening or weekend collaborative coding sessions. You don’t have to be
an expert. Beginners are welcome. You can bring your own project which
can be as simple as completing a tutorial. You will likely find a study
partner at your level or a mentor to help you learn.

If you are a woman learning Rails, look for one of the free workshops
from RailsBridge or Rails Girls. These are not exclusively for women;
everyone considered a “minority” in the tech professions is encouraged
to participate; and men are included when invited by a woman colleague
or friend.

3.7 Pair Programming

Learning to code is challenging, especially if you do it alone. Make it
social and you’ll learn faster and have more fun.

There’s a popular trend in the workplace for programmers to work
side-by-side on the same code, sharing a keyboard and screen. It’s
effective, both to increase productivity and to share knowledge, and
many coders love it. When programmers are not in the same office, they
share a screen remotely and communicate with video chat.

Look for opportunities to pair program. It’s the best way to learn to
code, even if your pairing partner is only another beginner. Learn more
about pair programming on the site
pairprogramwith.me and find a pairing
partner at codermatch.me or
letspair.net.

Remote pair programming requires tools for screen sharing and video
chat. Pairing sessions often use:

	Google+ Hangouts

	Screenhero

	Floobits

	Cloud9 IDE

More tools are emerging as remote pair programming becomes popular.

3.8 Pairing With a Mentor

By far, the best way to learn is to have a mentor at your side as you
undertake a project. That is an opportunity that is seldom available,
unless you’ve been hired to be part of a team in a company that
encourages pair programming.

You can try RailsMentors, a network of
volunteer mentors offering free help.

If you can pay for help, find a mentor using
HackHands or
AirPair. Market rates are expensive for a
student, obviously, but if you are learning on the job or building an
application for your own business, connecting online with a mentor might
be a godsend.

AirPair connects developers for real-time
help using video chat and screen sharing. Experts set their own rate and
the site matches you according to your budget. Expect to pay market
rates for consulting ranging from USD $40 per hour to $150 per hour or
more.

HackHands promises to instantly connect you
with a qualified expert at a cost of one dollar per minute for
mentorship using video chat and screen sharing.

3.9 Code Review

Code review is an essential part of the development process. There’s
always more than one way to implement a feature, and some ways are
better than others, but you may not know it unless you ask someone to
look at your code. When you pair with a mentor, you get the benefit of
code review. But even if you don’t have a mentor, you can get code
review online. StackExchange, the parent of StackOverflow, has a free
site for code review, and a new service promises code review as a
service:

	codereview.stackexchange.com

Expert code review will accelerate your learning faster than anything
else.

Knowing where to go for help is important; it is just as important to stay current.

3.10 Staying Up-to-Date

Rails changes frequently and its community is very active. Changes to
Rails, expert blog articles, and new gems can impact your projects, even
if you don’t work full-time as a Rails developer. Consequently, I urge
you to stay up-to-date with news from the community.

I suggest signing up for two weekly email newsletters:

	Ruby Weekly

	Green Ruby News

Another weekly email newsletter is more technical, and focused on code
arriving in the next version of Rails:

	This Week in Rails

For daily news about Rails, check Peter Cooper’s
RubyFlow site which lists new blog posts
from Rails developers each day.

Also take a look at this list of top blogs for Rails developers:

	45 Ruby Blogs

If you like podcasts, check out Ruby Rogues
and Envy Labs’s Ruby5.

Finally, you can follow @rails_apps on
Twitter for news about the RailsApps project.

 Chapter 4 Accounts You May Need

You’ll need accounts with four services before you begin building the application in this book.

This tutorial will show you how to save your work using
GitHub. You can sign up for a GitHub account for
free. Every experienced Rails developer has a GitHub account; it is where we
collaborate on our code, both commercial and open source projects.

We’ll create a form that allows website visitors to “opt-in” to a
mailing list. You’ll need a MailChimp account,
which is free. If you send email to a mailing list, you will find it is
useful to have an account with MailChimp or a similar service.

We’ll also send email from the application, which will require a
SendGrid account. SendGrid is a transactional email service that lets you send email messages efficiently and reliably. SendGrid offers a free account that allows you to send 12,000 messages per month for free.

Finally, we’ll deploy the tutorial application to
Heroku which provides Rails application
hosting. It costs nothing to set up a Heroku account and deploy as many
applications as you want. It is the easiest way to deploy a Rails application and most Rails
developers use Heroku at some time in their careers.

4.1 GitHub

Rails developers use GitHub for collaboration and
remote backup of projects.

For this tutorial, I suggest you get a free personal GitHub account if you don’t already have one. As a developer, your GitHub account establishes your reputation in the
open source community. If you’re seeking a job as a developer, employers
will look at your GitHub account. When you work with other developers,
they may check to see what you’ve worked on recently. Don’t be reluctant
to set up a GitHub account, even if you’re a beginner. It shows you are
serious about learning Rails.

You’ll be asked to provide a username. This can be a nickname or short
version of your real name (for example, your Twitter username).

You’ll be asked to provide an email address. It’s very important that
you use the same email address for your GitHub account that you use to
configure Git locally (there will be more about configuring Git later). If you create a Heroku account to deploy and host your Rails
applications, you should use the same email address.

After you create your GitHub account, log in and look for the button
“Edit Your Profile.” Take a few minutes to add some public information
to your account. It is really important to provide your real name and a
public email address. Displaying your real name on your GitHub account
makes it easy for people to associate you with your work when they meet
you in real life, for example at a meetup, a hackathon, or a conference. Providing a public email address makes it possible for other developers
to reach you if you ask questions or submit issues. If you can, provide
a website address (even just your Twitter or Facebook page). In general,
you won’t be exposed to stalkers or spammers (except some recruiters) if
you are open about yourself on GitHub.

Later I’ll show you how to set up and use Git and GitHub.

4.2 MailChimp

This tutorial shows how website visitors can sign up to receive a
newsletter provided by a MailChimp mailing
list. MailChimp allows you to send up to 12,000 emails/month to a list
of 2000 or fewer subscribers for free. There is no cost to set up an
account.

MailChimp will ask you to provide a website address and company details
for your account. These details are included when email messages are
sent to your subscribers. If you don’t have your own website, you can
enter the URL for your GitHub account for now. Use your own name for
a company if you don’t have one.

After you have set up a MailChimp account, create a new mailing list
where you can collect email addresses of visitors who have asked to
subscribe to a newsletter. The MailChimp “Lists” page has a button for
“Create List.” The list name and other details are up to you.

If you get frustrated with the complex and confusing MailChimp
interface, try to remember that the friendly MailChimp monkey is
laughing with you, not at you.

4.3 SendGrid

Earlier editions of this book showed how to use a Gmail
account to send email from the application. Google has taken steps to make Gmail more secure and now
it can be difficult to send email from a Rails application using Gmail.

This tutorial provides instructions for SendGrid. SendGrid offers a free account that allows you to send 12,000 messages per month for free.

Scroll to the bottom of the SendGrid pricing page to see details about the free plan. Click the “Try for Free” link to set up an account. No credit card is needed.

4.4 Heroku

We’ll use Heroku to host the tutorial
application so anyone can reach it.

To deploy an app to Heroku, you must have a Heroku account. Visit
https://signup.heroku.com/devcenter
to set up an account.

Be sure to use the same email address you used to register for GitHub. It’s very important that you use the same email address for GitHub and
Heroku accounts.

 Chapter 5 Get Started

Before you can start building, you’ll need to install Ruby (the
language) and Rails (the gem). I’ll provide links to installation
instructions that are up to date. Even if you’ve already installed
Rails, please review the instructions to make sure your development
environment is set up correctly. Other books and tutorials often skip
important details.

5.1 Text Editor and Terminal Applications

I’ve explained how to use a text editor and terminal application in Book One. If you haven’t used the Unix command line before, refer to Book One for an introduction.

I recommend the Atom text editor but you may use Sublime Text
or any others that provide syntax highlighting. Refer to Book One for important instructions about setting
up the text editor so you can open a file from the command line.

5.2 Copying and Pasting Code

In the next chapter you’ll begin building a Rails application.

You need to get the code from this tutorial into your computer. You
could just read and imagine, but really, building a working application
is the only way to learn.

The most obvious way is to copy and paste from this tutorial into your
text editor, assuming you are reading this on your computer (not a
tablet or printed pages). It’s a bit tedious and error-prone but you’ll
have a good opportunity to examine the code closely.

Some students like to type in the code, character by character. If you
have patience, it’s a worthwhile approach because you’ll become more
familiar with the code than by copying and pasting.

Don’t feel shy about copying code; it’s how you will learn. Working
programmers spend a lot of time copying code from others. At first, you
will copy a lot of code. As you gain proficiency, you will copy code and
adapt it, more extensively as you gain confidence and skill. Only when
you’ve been working full-time as a coder for months or years will you
find yourself writing code from scratch; even then, when you encounter
new problems, you will still look for code examples to copy and adapt.

Box 5.1.

Warning About the PDF and Kindle Versions

This book is available in several formats, including online (HTML), PDF,
ePub (Apple iBooks), and mobi (Kindle) versions.

Use the online edition of the book if you can. With the online edition,
you’ll be able to copy and paste the code without any problem. The ePub
version (using Apple iBooks) also preserves line breaks and indentation
when copying code.

Copying without line breaks will cause code errors. You’ll lose line
breaks when copying code with the following versions:

	PDF version on macOS using the Preview application

	mobi (Kindle)

If you use Adobe Acrobat you’ll be able
to copy the line breaks (though indenting is lost). You can also open a
PDF file in Chrome or Safari web browsers and copy code with line
breaks. With the mobi (Kindle) version, you’ll have to carefully
reformat the code after pasting into your text editor.

Indentation makes code more readable, so try to preserve the indentation
you see in the code samples. In YAML files (with the file extension
.yml), indentation is required (your application will break without
it).

5.3 Your Computer

You can develop web applications with Rails on computers running Mac OS
X, Linux, or Microsoft Windows operating systems. Most Rails developers
use macOS or Linux because the underlying Unix operating system has
long been the basis for open source programming.

Later in this chapter, I’ll give links to installation instructions for
macOS and Linux.

For Windows users, I have to say, installing Rails on Windows is
frustrating and painful. Readers and workshop students often tell me
that they’ve given up on learning Rails because installation of Ruby on
Windows is difficult and introduces bugs or creates configuration
issues. Even when you succeed in getting Rails to run on Windows, you
will encounter gems you cannot install. For these reasons, I urge you to
use Cloud9, a browser-based development environment, on your Windows
laptop.

5.3.1 Hosted Computing

If you are using Windows, or have difficulty installing Ruby on your
computer, try using Cloud9.

Cloud9 provides a hosted development environment. That
means you set up an account and then access a remote computer from your
web browser. The Cloud9 service is free for ordinary use. There is no
credit card required to set up an account. You’ll only be charged if you
add extra computer memory or disk space (which you don’t need for
ordinary Rails development).

The Cloud9 service gives you everything you need for Rails development,
including a Unix shell with Ruby pre-installed, plus a browser-based
file manager and text editor. Any device that runs a web browser will
give you access to Cloud9, including a tablet or smartphone, though you
need a broadband connection, a sizable screen, and a keyboard to be
productive.

5.4 Try the Terminal

Look for the Terminal application in the following places:

	MacOS: Applications - Utilities - Terminal

	Linux: Applications - Accessories - Terminal

	Windows: Taskbar Start Button - Command Prompt

On the Mac, search for the macOS Terminal application by pressing the Command-Spacebar combination (which Apple calls “Spotlight Search”) and searching for “Terminal.” The magnifying glass in the upper right corner of your screen will also launch “Spotlight Search.” Or look in the Applications/Utilities/ folder for the Terminal application. You’ll need to click the name of the application to launch the Terminal.

For Linux or Windows, The Command Line Crash Course explains how to launch a terminal application.

Launch your terminal application now.

Try out the terminal application by entering a shell command.

$ whoami

Don’t type the $ character. The $ character is a cue that you should
enter a shell command. This is a longtime convention that indicates you
should enter a command in the terminal application or console.

The Unix shell command whoami returns your username.

Don’t type the $ prompt.

You might see:

command not found: $

which indicates you typed the $ character by mistake.

If you are new to programming, using a text editor and the shell will
seem primitive compared to the complexity and sophistication of
Microsoft Word or Photoshop. Software developers edit files with simple
text editors and run programs in the shell. That’s all we do. We have to
remember the commands we need (or consult a cheatsheet) because there
are no graphical menus or toolbars. Yet with nothing more than a text
editor and the command line interface, programmers have created
everything that you use on your computer.

5.5 Installing Ruby

Your first challenge in learning Rails is installing Ruby on your
computer.

Frankly, this can be the most difficult step in learning Rails because
no tutorial can sort out the specific configuration of your computer. Get over this hump and everything else becomes easy.

The focus of this book is learning Rails, not installing Ruby, so to
keep the book short and readable, I’m going to give you links to
articles that will help you install Ruby.

You’ll spend at least an hour installing Ruby and Rails, so be sure to allow enough time for the task.

5.5.1 MacOS

See this article for macOS installation instructions:

Install Ruby on Rails - MacOS

5.5.2 Ubuntu Linux

See this article for Ubuntu installation instructions:

Install Ruby on Rails - Ubuntu

5.5.3 Hosted Computing

Cloud9 is a browser-based development environment. Cloud9 is free for small projects. If you have a fast broadband
connection to the Internet, this is your best choice for developing
Rails on Windows. And it is a good option if you have any trouble
installing Ruby on Mac or Linux because the Cloud9 hosted environment
provides everything you need, including a Unix shell with Ruby and RVM
pre-installed, plus a browser-based file manager and text editor. Using
a hosted development environment is unconventional but leading
developers do so and it may be the wave of the future.

See this article for Cloud9 installation instructions:

Install Ruby on Rails - Cloud9

The article shows how to get started with Cloud9.

If you use Cloud9, be sure to pick the “Blank” template for your workspace, not the “Ruby” or “Ruby on Rails” templates that provide a prebuilt Rails application. We’re building from scratch in this tutorial.

5.5.4 Windows

Here are your choices for Windows:

	Use the Cloud9 hosted development environment

	Install the Railsbridge Virtual Machine

	Use RubyInstaller for Windows

Cloud9 is ideal if you have a fast Internet connection. If not, download
the Railsbridge Virtual Machine to create a virtual Linux computer
using Vagrant. Other
tutorials may suggest using
RailsInstaller, but it will not provide an
up-to-date version of Ruby or Rails. Also, RVM does not run on Windows.

5.6 Your Workspace

Take a moment to think about where on your computer you’ll do your work
and store your files. You may have a documents/ folder. You could
make a similar folder named projects/ or code/ or workspace/
for your programming projects. Use the Unix mkdir command to create a
folder or create it with your file browser.

If you haven’t done so already, make a folder to contain your
programming projects. You don’t need to do this if you already created
a workspace/ folder in the Unix chapter in Book One.

$ cd ~
$ pwd
/Users/danielkehoe
$ mkdir workspace
$ cd workspace

In this tutorial, the terms “folders” and “directories” mean the same
thing.

Use the Unix cd command to change directories.

When you enter the Unix command cd ~, you’ll move to your home (or
“user”) directory. The squiggly ~ “tilde” character is a Unix shortcut
that indicates your home folder.

The Unix pwd command shows the “present working directory,” where you
are.

The Unix mkdir command creates an empty folder and we move into it with the Unix cd command.

5.6.1 Video Option

Watch the four minute video if you have subscribed:

	UNIX Commands Basics

5.7 Understanding Version Numbers

Rails follows a convention named semantic versioning:

	The first number denotes a major version (Rails 4)

	The second number denotes a minor release (Rails 4.2)

	The third number denotes a patch level (Rails 4.2.1)

A major release includes new features, including changes which break
backward compatibility. For example, switching from Rails 3.2 to Rails
4.0 required a significant rewrite of every Rails application.

A minor release introduces new features but doesn’t break anything. For
example, Rails 3.2 added the asset pipeline, and Rails 4.2 added the
Active Job feature for background processing.

A patch release fixes bugs but doesn’t introduce significant features. Usually this means you can change the version number in the Gemfile and
run bundle update without making any other changes to your
application.

5.8 Ruby and Rails Version Check

Check that appropriate versions of Ruby and Rails are installed in your
development environment. You’ll need:

	The Ruby language (version 2.3 or newer)

	The Rails gem (version 5.1 or newer)

Open your terminal application and enter:

$ ruby -v

You might see:

ruby 2.4.1p0 (...)

You’ve got Ruby version 2.4.1, patch level “p0” (Ruby versions add an
extra patch level to semantic versioning). If you’ve got a newer version
of Ruby, no problem; minor updates to Ruby don’t affect Rails.

Try:

$ rails -v

You might see:

Rails 5.1.2

If you see:

Rails is not currently installed on this system.

You are not using an RVM gemset where the Rails gem is installed. Go to the Installing Rails instructions for your computer if you have not set up Rails. The next section explains more about RVM gemsets which may be all you need to find Rails.

If you have Rails 4.2 or older versions, you must update to Rails 5.1. See the Installing Rails instructions for your computer.

Versions such as 5.0.0.beta3 or 5.0.0.rc1 are beta versions or
“release candidates.” You can use a release candidate in the weeks
before a final release becomes available.

If you’ve got Rails 5.1.3 or newer, that’s fine. It means minor bugs
have been fixed since this was written, but the book is still current. You can check for the current version of Rails here.

Box 5.2.

Rails 5.1

This edition of the book was prepared using Rails 5.1.2. The newest version of the book is listed on the README page of the learn-rails GitHub repository.

5.9 RVM

I promised that this book would introduce you to the practices of
professional Rails developers. One of the most important utilities
you’ll need in setting up a real-world Rails development environment is
RVM, the Ruby Version Manager.

RVM lets you switch between different versions of Ruby. Right now, that
might not seem important, but as soon as a new version of Ruby is
released, you’ll need to upgrade, and it is best to be ready by
installing the current version of Ruby with RVM, so you can easily add a
new version of Ruby later, and still switch back to older versions as
needed.

RVM also helps you manage your collections of gems, by letting you
create multiple gemsets. Each gemset is the collection of gems you
need for a specific project. Rails changes frequently; with RVM, you can
install a specific version of Rails in a project gemset, along with all
the gems you need for the project. When a new version of Rails is
released, you can create a new gemset with the new Rails version when
you start a new project. Your old project will still have the version of
Rails it needs in its own gemset.

If you’ve followed the instructions in the article Installing Rails and installed RVM, you’ll be ready to handle multiple versions of Ruby, and multiple
versions of Rails. That’s as it should be. Most professional Rails
developers have more than one version of Ruby or Rails, and RVM makes it
easy to switch.

RVM will show you a list of available Ruby versions:

$ rvm list

You can see a list of available gemsets associated with the current Ruby
version:

$ rvm gemset list

You will see an arrow that shows which gemset is active.

You will see a global gemset as well as any others you have created,
such as a gemset for Rails5.0.

Here’s how to switch between gemsets:

$ rvm gemset use global

And switch back to another:

$ rvm gemset use default

After you’ve worked on a few Rails applications, you’ll see several
project-specific gemsets if you are using RVM in the way most developers
do.

RVM is not the only utility you can use to manage multiple Ruby
versions. Some developers like Chruby
or rbenv. Don’t be worried if you hear debates about RVM versus Chruby or rbenv;
developers love to compare the merits of their tools. RVM is popular,
well-supported, and an excellent utility to help a developer install
Ruby and manage gemsets; that’s why we use it.

5.10 Project-Specific Gemset

For our learn-rails application, we’ll create a project-specific gemset
using RVM. We’ll give the gemset the same name as our application.

By creating a gemset for our tutorial application, we’ll isolate the
current version of Rails and the gems we need for this project. Whether
you use RVM or another Ruby version manager, this will introduce you to
the idea of “sandboxing” (isolating) your development environment so you
can avoid conflicts among projects.

After we create the project-specific gemset, we’ll install the Rails gem
into the gemset. Enter these commands:

$ rvm use ruby-2.4.1@learn-rails --create
$ gem install rails

This will install the newest version of Rails 5.0. It takes a few minutes to automatically install all the gems that are needed for Rails.

It’s absolutely necessary to create a gemset and install Rails so we can
move on to creating the application in the next chapter. If you have
trouble at this point, refer to the article Installing Rails
or the RVM website. Linux users may need to check instructions for Integrating RVM.

Let’s make sure Rails is ready to run. Open a terminal and type:

$ rails -v

You should see the message “Rails 5.1.2” (or something similar).

Now let’s explore the rails new command and get started building the
tutorial application.

 Chapter 6 Create the Application

In this chapter, we’ll begin building the tutorial application. But first, let’s consider the
options you have for starter applications.

6.1 Starter Applications

Rails provides a framework; that is, a software library that provides
utilities, conventions, and organizing principles to allow us to build
complex web applications. Without a framework, we’d have to code
everything from scratch. Rails gives us the basics we need for many
websites.

Still, the framework doesn’t give us all the features we need for many
common types of websites. For example, we might want users to register
for an account and log in to access the website (“user management and
authentication”). We might want to restrict portions of our website to
just administrators (“authorization”). We also might want to add gems
that enhance Rails to aid development (gems for testing, for example) or
improve the look and feel of our application (the Bootstrap or
Foundation front-end frameworks). Developers often mix and match
components to make a customized Rails stack.

Developers often use a starter application instead of assembling an
application from scratch. You might call this a “template” but we use
that term to refer to the view files that combine HTML with Ruby code
to generate web pages. Most experienced developers have one or more
starter applications that save time when beginning a new project. The
RailsApps project was launched to provide
open source starter applications so developers could collaborate on
their starter applications and avoid duplicated effort. After you gain
some skill with this tutorial, you might use the RailsApps starter apps
to instantly generate a Rails application with features like
authentication, authorization, and an attractive design. At the end of
this book, you’ll learn about Rails Composer, a
tool for building starter applications.

For now, we’ll begin with the Rails default starter application.

6.2 Workspace Folder and RVM Gemset

Are you in the folder named workspace/ you created earlier?

$ pwd
/Users/danielkehoe/workspace/

If you’re not in your workspace folder, enter a Unix command to move to the folder:

$ cd ~/workspace

We already created a project-specific gemset using RVM. Make sure it’s
ready to use:

$ rvm use ruby-2.4.1@learn-rails
$ rvm gemset list
gemsets for ruby-2.4.1...
 (default)
 global
=> learn-rails

You should see an arrow pointing to the learn-rails gemset. If not, go
back to the previous “Get Started” chapter.

6.3 Use “Rails New” to Build the Application

Let’s go! We have selected a gemset, we have Rails installed, and we’re in our workspace/ folder. Let’s build a Rails application!

To create the Rails default starter application, type:

$ rails new learn-rails

This will create a new Rails application named “learn-rails.”

It takes a few minutes when the build script runs bundle install. Don’t worry; just give it enough time to finish (but no more than five minutes even if your Internet connection is very slow).

In the future, you can give your application a different name. For this
tutorial, it is VERY IMPORTANT that you use the name “learn-rails.” You’ll be copying code that assumes the name is “learn-rails;” it will
save you trouble to use this name.

The rails new command will create ten folders and 93 files.

It will install 62 gems into your gemset.

After you create the application, switch to its folder to continue work
directly in the application:

$ cd learn-rails

This is your project directory. It is also called the application root
directory. You’ll spend all your time inside this folder.

Box 6.1.

Spring

After creating a new Rails application, you may see a message to run a command:

$ bundle exec spring binstub --all

The command sets up Spring. Spring is a Rails application preloader. It speeds up development by keeping your application running in the background so you don’t need to stop and restart it when you make changes.

After you change into the project directory, you can run the command.

Type the ls command to show the folders and files in a directory. Soon
we’ll learn more about each of these folders and files.

$ ls
Gemfile Rakefile config lib test
Gemfile.lock app config.ru log tmp
README.md bin db public vendor

6.4 Make a Sticky Gemset

RVM gives us a convenient technique to make sure we are always using the
correct gemset when we enter the project directory. It will create
hidden files to designate the correct Ruby version and project-specific
gemset. Enter this command to create the hidden files:

$ rvm use ruby-2.4.1@learn-rails --ruby-version

The –ruby-version argument creates two files, .ruby-version and
.ruby-gemset, that set RVM every time we cd to the project
directory. Without these two hidden files, you’d need to remember to
enter rvm use ruby-2.4.1@learn-rails every time you start
work on your project after closing the console.

If you see “ERROR: Gemset ‘learn-rails’ does not exist”, perhaps you
overlooked an earlier step in the Project-Specific Gemset section (in
the previous chapter) where we created the learn-rails gemset.

After creating the two hidden files, check if they are there:

$ ls -1pa
./
../
.gitignore
.ruby-gemset
.ruby-version
Gemfile
Gemfile.lock
README.md
Rakefile
app/
bin/
config/
config.ru
db/
lib/
log/
public/
test/
tmp/
vendor/

The “a” flag in the Unix ls -1pa command displays hidden files. Each
hidden file is listed with a dot (period or full stop) at the beginning
of the filename. You’ll notice .ruby-gemset and .ruby-version.

You’ll also see two “special files” which are not files at all:

	./ - an alias that represents the current directory

	../ - an alias that represents the parent directory

Box 6.2.

Hidden Files in Cloud9

If you’re using Cloud9, you must change preferences to see hidden files. In the window that contains the file list, there is a gear icon (dark in color and difficult to see). Clicking the gear option will give you options:

	Show Root File System

	Show Home in Favorites

	Show Hidden Files

You must select all three options to see the hidden files.

[image: images/figures/23_cloud9_hidden_files]

That’s a brief diversion into Unix; let’s try running our new Rails
application.

6.5 Test the Application

You’ve created a simple default web application. It’s ready to run.

6.5.1 Launching the Web Server

You can launch the application by entering the command:

$ rails server

Alternatively, to save typing, you can abbreviate the rails server
command:

$ rails s

If you are using the Cloud9 hosted service, you’ll need to enter bin/rails server -p $PORT -b $IP.

You’ll see:

=> Booting Puma
=> Rails 5.1.2 application starting in development on http://localhost:3000
=> Run `rails server -h` for more startup options
=> Ctrl-C to shutdown server
Puma starting in single mode...
* Version 3.4.0 (ruby 2.4.1-p0), codename: Owl Bowl Brawl
* Min threads: 5, max threads: 5
* Environment: development
* Listening on tcp://localhost:3000
Use Ctrl-C to stop

The rails server command launches the Puma web
server that is provided with
Rails.

6.5.2 Errors for Linux Users

If you enter the command rails server and get an error message:

... Could not find a JavaScript runtime ...

You need to install Node.js. For help, see Install Ruby on Rails -
Ubuntu.

6.5.3 Viewing in the Web Browser

To see your application in action, open a web browser window and
navigate to http://localhost:3000/. You’ll see
the Rails default information page.

Box 6.3.

Viewing on a Hosted Platform

It is easy to see your web application in action on your local computer. If you are using a hosted service such as Cloud9, it is a little more complicated.

If you are using Cloud9, click the “Preview” link in the IDE menu (at the top of the page). There is a “Run” link, too, but it doesn’t work if you have created your Rails application in a folder within the workspace/ folder. You can also open a browser tab or window and enter the URL for the application, as hosted by Cloud9. When you launch the Rails server, Cloud9 displays a helpful message showing the URL where you can view your application.

6.5.4 Watch Log Messages

Notice that messages scroll in the console window when your browser
requests the Rails default web page.

Open the file log/development.log and you’ll see the same messages. When a browser sends requests to the Puma web server, diagnostic
messages are written to the console and to the log/development.log
file. These diagnostic messages are an important tool for
troubleshooting when you are developing.

6.5.5 Multiple Terminal Windows

You can keep more than one terminal window open. For convenience, you
may want to keep a terminal window open for running the web server and
watching diagnostic messages. In the Terminal or iTerm2 applications,
Command-t opens additional console sessions in new “tabs.”

Developers typically open more than one terminal window when they work
on a Rails application. They’ll start the server with the rails server
command in one window (or tab) and watch the log messages. In another
window (or tab), they’ll enter commands as they build the application. They might create folders with a Unix command, run generators, or try
out code with the rails console command (you’ll learn about the
rails console command in the “Troubleshoot” chapter).

To some people, the text editor and the terminal window look very
similar. When you work on a file in a text editor, you make changes to
one file, in one place. The terminal window is very different. Your
computer can run multiple programs at once. You can open multiple
terminal windows. In each terminal window, you can use the command line
to launch a different program. Each program you start in a terminal
window is a separate process and multiple processes can run
simultaneously. You can end a process by pressing Control-c (in most
cases), Control-d (in some cases), or closing the terminal window
(almost always). From this perspective, a terminal window is a tool you
use to launch processes and your computer is a machine that runs
processes.

6.5.6 Stop the Web Server

You can stop the server with Control-c to return to the command prompt. When we say Control-c, we mean hold down the Control key as you press the letter “c”.

Most of the time you’ll keep the web server running as you add or edit
files in your project. Changes will automatically appear when you
refresh the browser or request a new page. There is a tricky exception,
however. If you make changes to the Gemfile, or changes to configuration
files, the web server must be shut down and relaunched for changes to be
activated.

As a rule of thumb, files that produce web pages can be changed without
a restart. This includes any file in the app/ folder which creates
web pages, as well as the config/routes.rb file. Changes to files
that create the environment for the web application, such as gems or
configuration files, and are loaded at web server launch, won’t be seen
until the web server is restarted.

6.6 Get Organized for Efficiency

Before we learn about the Rails directory structure, take a minute to
organize your screen real estate. During development, you’ll jump
between the console in a terminal application, your text editor, and a
web browser window. As a Rails developer, you’ll do this constantly, so
think about how you can do this efficiently. Multiple screens make it
easy, but even on a laptop you can get organized for efficiency.

[image: images/figures/learn-rails-getting-organized]
Figure 6.1: Getting organized for efficiency.

Here’s some ideas. Open a window in the terminal application, place it
on the left side of your screen, and stretch it to the maximum vertical
height of your screen. Open multiple tabs in your terminal application. Keep one tabbed window open for entering shell commands (like cd or
ls) and another terminal window open for running the rails server
command and viewing the log output.

Place your text editor window next to the terminal window and stretch it
to full vertical height. If you are using Atom or Sublime Text, you can open two
editor panels side-by-side. Some developers find it helpful to leave the
file browser panel open to navigate the project directory; others hide
the file browser panel to save space.

If you have enough screen space, leave your web browser open and place
it next to your text editor. If your screen space is limited, you may
have to overlap the web browser with the text editor, but position your
web browser window so you can bring it to the front with a single click. You’ll need multiple tabs open in your web browser. Unless you like
constant distraction, close Gmail, Facebook, Twitter, and Hacker News. Open tabs for http://localhost:3000/, this
tutorial, and additional references or documentation.

On the Mac, there are window management utilities that reposition
windows with just a click or keyboard command; I use
Moom but you can find others if you
search for “mac window management utilities.”

This is just a guide; I’m sure you can improve upon these suggestions.

 Chapter 7 The Parking Structure

We’ve created the default Rails starter application.

The rails new command has created a project directory for us.

It is a parking structure for our code. Unlike an ordinary parking
structure, where you park anywhere you like, this garage has assigned
parking. You have to park your code in the right place. This is Rails,
where convention brings order to the development process.

As you develop a web application, you’ll do all your work in the project
directory. It is important to know your way around and understand the
purpose of each folder and file.

If you’ve built simple websites with HTML and CSS, or built websites
with unstructured platforms such as Perl or PHP, you’ll be surprised at
the complexity of the Rails project directory. Rails is a software
machine with many moving parts; the project directory provides a
structure to manage the complexity. The logic and order of the project
directory structure is familiar to every Rails developer, and consistent
for every Rails application, which makes it easy to collaborate,
maintain an application, and create open source projects.

7.1 Video Option

Watch the eleven minute video if you have subscribed:

	Rails Project Directory

7.2 Project Directory

Use the Unix ls command to list the contents of the project directory. For a one-column list that shows each subdirectory (marked with a
slash), we’ll add the -1p option to the command.

$ ls -1p

You’ll see:

Gemfile
Gemfile.lock
README.md
Rakefile
app/
bin/
config/
config.ru
db/
lib/
log/
public/
tmp/
vendor/

Now is a good time to open a file browser window and look at the
contents of the project directory. On the Mac, there’s a command you can
use to open the graphical file browser from the console. If you’re in
the project directory, type open .. The period (or “dot”) is a Unix
symbol that means “the directory I’m in.”

$ open .

[image: images/figures/24_rails_directory_structure]
Figure 7.1: Rails directory structure.

You’ll learn more about each file and folder as you proceed through the
tutorial.

7.3 Get to Know the Folders and Files

To get you started, here are three tables. The first describes the files
and folders that are important for every beginner. The second table
describes the files and folders that you can ignore. The third table is
a preview of things to come.

7.3.1 Important Folders and Files

These folders and files are important to beginners. This is where you
will spend your time in Rails.

	Gemfile
	Lists all the gems used by the application.

	Gemfile.lock
	Lists gem versions and dependencies.

	README.md
	A page for documentation.

	app/
	Application folders and files.

	config/
	Configuration folders and files.

	db/
	Database folders and files.

	public/
	Files for web pages that do not contain Ruby code, such as error pages.

7.3.2 Not-So-Important Folders and Files

These folders and files are not important to beginners.

	Rakefile
	Scripts for the Rake utility program.

	bin/
	Folder for binary (executable) programs.

	config.ru
	Configuration file for Rack (a software library for web servers).

	lib/
	Folder for miscellaneous Ruby code.

	log/
	Folder for application server logfiles.

	tmp/
	Temporary files created when your application is running.

	vendor/
	Folder for Ruby software libraries that are not gems.

7.3.3 Folders for Testing

	spec/
	Folder for the popular RSpec testing framework.

	test/
	Folder for the default Rails testing framework.

The test/ folder is present in the default Rails starter app. You’ll
use the test/ folder when you learn about test-driven development. Many Rails developers use a different gem for testing, named RSpec, and
your RSpec tests will go in a spec/ folder.

7.4 The App Directory

Take time to drill down into the app/ folder in the project
directory. This is easiest using the file browser.

[image: images/figures/24_app_folder]
Figure 7.2: Rails app folder.

You can also use your text editor to view the folder.

Or do it with Unix commands:

$ cd app
$ ls -1p
assets/
channels/
controllers/
helpers/
jobs/
mailers/
models/
views/

Whether you use the file browser, Unix commands, or your text editor, you are looking at the same file system.

Most of the work of developing a Rails application happens in the
app/ folder.

Earlier we described Rails as “a set of files organized with a specific
structure.” We said the structure is the same for every Rails
application. The app/ directory is a good example. The folders
in the app/ directory are the same in every Rails application. This
makes it easy to collaborate with other Rails developers, providing
consistency and predictability.

	assets

	channels

	controllers

	helpers

	jobs

	mailers

	models

	views

You may recall our earlier description of Rails from the perspective of
a software architect. In this folder, you’ll see evidence of the
model–view–controller
design pattern. Three folders named models/, views/, and
controllers/ enforce the software architect’s “separation of
concerns” and impart structure to our code. As you build the
application, we’ll explain the role of the MVC components in greater
detail.

Five folders play supporting roles. The
mailers folder is for code that sends email messages. The helpers folder
is for Rails view helpers, snippets of reusable code that generate
HTML. Later, when we learn more about views, we’ll say view helpers
are like “macros” that expand a short command into a longer string of
HTML tags and content. Rails 3.1 added the assets/ folder as a location
for CSS and JavaScript files. The jobs/ folder is for background jobs
built with the Rails ActiveJob feature. Rails 5.0 added the channels/ folder
for the ActionCable feature which uses WebSockets for real-time communication
between web server and browser.

7.4.1 Folders of Future Importance

You won’t encounter these when you are a beginner:

	policies/
	Folder for code that controls access to features

	services/
	Folder for code that reduces the complexity of models and controllers

If you join a project to work on a large and complex Rails application,
you may see folders such as these in the app/ directory. As an
application grows in complexity, an experienced software architect may
suggest reducing the size of models and controllers by moving code to
“POROs” (plain old Ruby objects). Code in any folder in the app/
directory is shared throughout a Rails application without any
additional configuration (in contrast, code you add to the lib/
directory is only available with some extra work). Rails provides a
basic model–view–controller framework but it is often necessary to
extend it with code in a services/ folder. Similarly, a policies/ folder
can be used to consolidate code that controls access to various features or pages of a
web application.

Use the cd .. command (“change directory dot dot”) to return to the
project directory.

$ cd ..
$ pwd
/Users/danielkehoe/workspace/learn-rails

As a Rails developer, you’ll spend most of your time navigating the
hierarchy of folders as you create and edit files. And because Rails
provides a consistent structure, you’ll quickly find your way on any
unfamiliar project.

 Chapter 8 Time Travel with Git

Now that we’ve looked at our Rails project directory from the viewpoint
of a programmer and software architect, let’s consider the viewpoint of
the time traveler.

This chapter will introduce you to software source control, also
called version control or revision control. The terms all have the
same meaning. At first sight, the concept seems rather dull, like
sorting your socks. But it makes professional software development
possible and, at the core, it is essentially a form of time travel.

To understand time travel, we need to understand state. It’s a term
you’ll encounter often in software development. We know about states of
matter. Water can be ice, liquid, or steam. Imagine a machine with a
button that, each time it is pressed, changes water from one state to
another. We call this a state machine. Almost every software program
is a state machine. When a program receives an input, it transitions
from one state to another. Like flipping a light switch, there’s no
in-between. Light or dark. Ice, liquid, or steam. Or, in a web
application: logged in, logged out.

When we write software code, there’s a lot of in-between. We look things
up, we think, we type errors and we make corrections. As humans, we
spend a lot of time in a flow of undetermined state. We can save our
work at any time, but we may be saving typos or unfinished code that
doesn’t work. Every so often, we get to a point where a task is
finished; we’ve fixed all our errors and our code runs. We want to
preserve the state of our work. That’s when we need a version control
system.

A version control system does more than a software application’s “Save”
command. Like a “Save” command, it preserves the current state of our
files. It also allows us to add a short note that describes the work
we’ve done. More importantly, it archives a snapshot of the current
state in a repository where it can be retrieved if needed.

Here’s where the time travel comes in. We can go back and recover the
state of our work at any point where we committed a snapshot to the
repository. In software development, travel to the past is essential
because we often make mistakes or false starts and have to return to a
point where we know things were working correctly.

What about time travel to the future? Often we need to try out code we
may decide to discard, without disturbing work we’ve done earlier. Version control systems allow us to explore alternative futures by
creating a branch for our work. If we like what we’ve done in our
branch, we can merge it into the main trunk of our software project.

Unlike time travel in the movies, we can’t travel back to any arbitrary
point in the flow of time. We can only travel to past or future states
we’ve marked as significant by checking our work into the repository.

8.1 Git

The dominant version control system among Rails developers is
Git, created by the
developer of the Linux operating system.

Unlike earlier version control systems, Git is ideal for wide-scale
distributed open source software development. Combined with
GitHub, the “social coding” website, Git makes it
easy to share and merge code. When you work with others on a project,
your Git commit messages (the notes that accompany your snapshot)
offer a narrative about the progress of the project. Well-written commit
messages describe your work to co-workers or open source collaborators.

GitHub’s support for forking (making your own copy of a repository)
makes it possible to take someone else’s project and modify it without
impacting the original. That means you can customize an open source
project for your own needs. You can also fix bugs or add a feature to an
open source project and submit a pull request for the project
maintainer to add your work to the original. Fixing bugs (large or
small) and adding features to open source projects are how you build
your reputation in the Rails community. Your GitHub account, which shows
all your commits, both to public projects and your own projects, is more
important than your resumé when a potential employer considers hiring
you because it shows the real work you have done.

Collaboration is easy when you use a branch in Git. If you and a
coworker are working on the same codebase, you can each make a branch
before adding to the code or making changes. Git supports several kinds
of merges, so you can integrate your branch with the trunk when your
task is complete. If your changes collide with your coworker’s changes,
Git identifies the conflict so you can resolve the collision before
completing the merge.

All the power of Git comes at a price. Git is difficult for a beginner
to learn, largely because many of its procedures have no real-world
analog. Have you noticed how time travel movies require mental
gymnastics, especially when you try to make sense of alternative futures
and intersecting timelines? Git is a lot like that, mostly because we
use it to do things we don’t ordinarily do in the real world.

In this tutorial, you won’t encounter Git’s advanced procedures, like
resolving merges or reverting to earlier versions. We’ll stick to the
basics of archiving our work (and in one case, discarding work that
we’ve done for practice). You can build the tutorial project without
using Git. But I urge you to use Git and a GitHub account for this
project, for two reasons. First, with your tutorial application on
GitHub, you’ll show potential employers or collaborators that you’ve
successfully built a useful, functioning Rails application. More
importantly, you must get to know Git if you plan to do any serious
coding, either as a professional or a hobbyist.

Before I show you Git commands, I want to mention that some people use
graphical client applications to manage Git. MacOS has GitHub for
Mac, Git Tower,
and other Mac Git clients. Graphical applications for Git are useful for colleagues who don’t use a
Terminal application, such as graphic designers or writers. There’s no
need for you to install these applications. Every developer I’ve met
uses Git from the command line. It will take effort to master Git; the
commands are not intuitive. But it is absolutely necessary to become
familiar with Git basics.

Before you do any work on the tutorial application, I’ll show you the
basics of setting up and using Git.

8.2 Is Git Installed?

As a first step, make sure Git is installed on your computer:

$ which git
/usr/local/bin/git
$ git version
git version ...

If Git is not found, install Git. See the article Rails with Git and
GitHub for installation
instructions.

8.3 Is Git Configured?

Make sure Git knows who you are. Every time you update your Git
repository with the git commit command, Git will identify you as the
author of the changes.

$ git config --get user.name
$ git config --get user.email

You should see your name and email address. If not, configure Git:

$ git config --global user.name "Real Name"
$ git config --global user.email "me@example.com"

Use your real name so people will associate you with your work when they
meet you in real life. There’s no reason to use a clever name unless you
have something to hide. And use your full name, not just your first name.

Use the same email address for Git, your GitHub account, and Heroku to
avoid headaches.

8.4 Create a Repository

Now we’ll add a Git repository to our project. It’s a basic step you’ll
repeat every time you create a new Rails project.

Extending the time traveler analogy, initializing a Git repository is
equivalent to setting up the time machine.

Be sure you are in your project directory, not your user home directory or somewhere else. Use the pwd command to check:

$ pwd
/Users/danielkehoe/workspace/learn-rails

The git init command sets up a Git repository (a “repo”) in the
project directory. We add the Unix symbol that indicates Git should be
initialized in the current directory (git init dot):

$ git init .
Initialized empty Git repository in ...

It creates a hidden folder named .git/ in the project directory. You
can peek at the contents:

$ ls -1p .git
HEAD
config
description
hooks/
info/
objects/
refs/

All Git commands operate on the hidden files. The hidden files record
the changing state of your project files each time you run the
git commit command. There is no reason to ever edit files inside the
hidden .git/ folder (doing so could break your time machine).

8.5 GitIgnore

The hidden .git/ folder contains the Git repository with all the
snapshots of your changing project. The snapshots are highly compressed,
only containing records of changes, so the repository takes up very
little file space relative to the project as a whole.

Not every file should be included in a Git snapshot. Here are some types
of files that should be ignored:

	log files created by the web server

	database files

	configuration files that include passwords or API keys

Git gives us an easy way to ignore files. A hidden file in the project
directory named .gitignore can specify a list of files that are
never seen by Git. The rails new command creates a .gitignore file
with defaults that include log files and database files. Later, when we
add configuration files that include secrets, we’ll update the
.gitignore file.

Take a look at the contents of the .gitignore file. We use the Unix
cat command to display the contents of the file:

$ cat .gitignore
See https://help.github.com/articles/ignoring-files for more about ignoring files.
#
If you find yourself ignoring temporary files generated by your text editor
or operating system, you probably want to add a global ignore instead:
git config --global core.excludesfile '~/.gitignore_global'

Ignore bundler config.
/.bundle

Ignore the default SQLite database.
/db/*.sqlite3
/db/*.sqlite3-journal

Ignore all logfiles and tempfiles.
/log/*
/tmp/*
!/log/.keep
!/tmp/.keep

Ignore Byebug command history file.
.byebug_history

For a .gitignore file that ignores more, see an example .gitignore
file
from the RailsApps project.

8.6 Git Workflow

Your workflow with Git will move through four distinct phases as you add
or edit files.

8.6.1 Untracked Files

The first phase is a “dirty” state of untracked and changed files,
before any snapshot. The git status command lists all folders or files
that are not checked into the repository.

$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 .gitignore
 Gemfile
 Gemfile.lock
 README.md
 Rakefile
 app/
 bin/
 config.ru
 config/
 db/
 lib/
 log/
 public/
 test/
 tmp/
 vendor/

nothing added to commit but untracked files present (use "git add" to track)

In the online version of this book (the HTML version), the example above
appears in green. In the terminal window on your computer, it will be red, showing
you untracked files.

Here the git status command tells us that we have many untracked
files. We have created new files and they are saved on the computer’s
hard disk but nothing has been recorded in the Git repository.

8.6.2 Staging

I call this step, “Pose for your snapshot.”

Recording files in the Git repository takes two steps: staging and
committing. There will be times when you change many files at once. For
example, you may fix a bug, add a new graphic, and change a form. You
might think you’d like to have Git automatically record all the changes
as you save each file. But the story of your project would be confusing
and overly detailed. Git requires you to mark one or more files
(“staging”) before recording the changes (“committing”). This gives you
fine-grained control over the recorded history of your project.

You can mark individual files to be staged:

$ git add Gemfile

Adding individual files allows you to selectively record the history of
your project. For example, you might stage and commit a series of bug
fixes before you stage and commit new features. Applying the time
traveler analogy, it will be easier to travel back to look at bug fixes
if they are not mixed in with new features.

More often, you’ll mark all the files to be staged. Do so now:

$ git add -A

Running git status will show you a long list of files that are staged
and ready to commit.

There are three forms of the git add command:

	git add foo.txt adds a file named foo.txt

	git add . adds all new files and changed files, except deleted files

	git add -A adds everything, including deletions

If it seems nonsensical that the command git add -A “adds deletions,”
don’t worry. Like time travel, Git will stretch your understanding of
what makes sense.

Most often, you can simply use the git add -A form of the command.

Now that you’ve marked the files that will be committed to the repository,
you’ve told everyone to pose, and you’re ready to take the snapshot.

8.6.3 Committing

The previous step, the “posing” step, or staging, gives you an opportunity to select particular files
before you commit. If you’ve only worked on one feature, you’ll likely stage and commit all your files.

The next step is a “commit” which I like to call, “clicking the snapshot.”

When you “make a commit”, you include a message that describes the work
you’ve done. For a time traveler, the “commit message” is important; you
are leaving a trail to help you find your way into the past. Google will
show you dozens of blog posts about “writing better commit messages” but
common sense can be your guide. For example, writing “fix registration form to catch
blank email addresses” will be more helpful than merely writing “fix
bugs.” And if you wonder why commit messages are commonly written in the
imperative not past tense (“fix” not “fixed”), it’s a time traveler
convention.

Now commit your project to the repository:

$ git commit -m "Initial commit"

The -m flag lets you add a message for the commit.

The pristine state of your new Rails application is now recorded in the
repository on your local computer.

Running git status will tell you “nothing to commit, working directory
clean.”

$ git status
On branch master
nothing to commit, working directory clean

You’ve recorded your snapshot locally. Next let’s see a list of previous snapshots. Then we’ll learn how to save your snapshots remotely to GitHub.

8.6.4 Git Log

You can use the git log command to see your project history:

$ git log
commit 8da41eec9e864ed91b4a445d8cefdf7893e2faf6
Author: Daniel Kehoe <daniel@danielkehoe.com>
Date: Fri Dec 18 10:30:12 2015 +0700

 Initial commit

The long string of characters that follows “commit” is an ID, or marker, that will help you travel
back in time if you need to do so.

If you get “stuck” in git log, type q to return to the command
prompt.

I like to use the git log command with an option for a compact
listing:

$ git log --oneline
8da41ee Initial commit

Don’t worry if your console doesn’t show 8da41ee. The ID for your commit will be different.

The listing is easier to review when it is displayed in a compact
format. The commit ID is abbreviated but it is all you need to travel back in time.

8.6.5 Repositories

When we talk about repositories, or “repos,” we mean the archive of our git commits. The local repo is located in the hidden folder named .git/ in the project directory. Of course, if your hard drive crashes, or your computer is lost or stolen, you’ll lose
your local repo along with your project. So it is wise to save your repository in
the cloud. The GitHub site is a place to save repositories. GitHub is also a place for
collaboration. Most Rails developers save their repositories to Github, as either
a public repo for open source projects, or a private repo for proprietary projects.

8.6.6 Pushing to GitHub

We’ve seen three phases of the Git workflow: untracked, staged, and
committed.

A fourth stage is important when you work with others: pushing to
GitHub.

The repositories hosted on your GitHub account establish your reputation
as a Rails developer for employers and developers you may work with. Even if your first project is copied from a tutorial, it shows you are
serious about learning Rails and studying conscientiously.

Did you create a GitHub account? Now would be a good time to add your
repo to GitHub.

Go to GitHub and create a new empty repository
for your project. Name
the repository “learn-rails” and give it a description. If the
repository is public, hosting on GitHub is free. Don’t be reluctant to
go public with an unfinished or half-baked project; everyone expects
projects on GitHub to be works in progress.

Add GitHub as a remote repository for your project and push your local
project to GitHub. Before you copy and paste the command, notice that
you need to insert your own GitHub account name. In other words, change
YOUR_GITHUB_ACCOUNT in the command shown below.

Box 8.1.

Warning

STOP! Be sure to change YOUR_GITHUB_ACCOUNT to your GitHub user name. If you don’t, you will create a mess that you have to fix with the instructions
here.

$ git remote add origin https://github.com/YOUR_GITHUB_ACCOUNT/learn-rails.git
$ git push -u origin master

The -u option sets up Git so you can use git push in the future
without explicitly specifying GitHub as the destination.

Now you can view your project repository on GitHub at:

	https://github.com/YOUR_GITHUB_ACCOUNT/learn-rails

Obviously you must change YOUR_GITHUB_ACCOUNT in the web address to see your own repository.

Take a look. It’s an exact copy of the project on your local computer.

If you haven’t used GitHub before, take some time to explore. GitHub is
absolutely essential to all open source Rails development.

You may notice that the README.md file is automatically
incorporated into the home page of the project repository on GitHub. For
our next step, we’ll update the README file, commit it to the local
repo, and push it up to GitHub. It will be good practice for using Git.

8.7 The README

Changing the README file is a good way to practice with Git. It’s also a
good habit to edit the README file whenever you create a new project. It’s easy to neglect the README for little projects that you’ve just
started. But replacing a default README file shows you are a
disciplined, conscientious developer who will be a good collaborator.

The new README file can be brief. Just state your intentions and
acknowledge any code you’ve borrowed. For this project you could say,
“Excited to learn Rails with help from Daniel Kehoe’s book!”

In your text editor, open the file README.md and replace the
contents:

Learning Rails

Learning Rails with a tutorial from learn-rails.com.

GitHub lets you add formatting using your choice of markup syntax,
depending on the file extension you add to the filename:

	README.md uses the GitHub Flavored Markdown syntax

	README.textile uses the Textile syntax

	README.rdoc uses the rdoc syntax

We’ll use Markdown syntax by adding the # character before the first
line of text to force a headline. And we’ll add a link that leads to the
learn-rails.com website.

There’s no requirement that you use Markdown syntax in your README file. Markdown simply is a popular way to add formatting to improve readability.

Use git status to see what has changed:

$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

Here’s our typical workflow. We’ll stage and commit the change:

$ git add -A
$ git commit -m "update README"

Then we’ll push the change to GitHub:

$ git push origin master

If you decide not to use GitHub for this tutorial, you can skip this
step (and skip it throughout the tutorial).

Take a look at your GitHub repository (refresh the web page). Very cool! The README file has been updated.

The git log command will display your project history:

$ git log --oneline
69b9b6c update README
8da41ee Initial commit

To learn more about Git, I recommend the book
Learn Enough Git to Be Dangerous
by my colleague Michael Hartl. An online version is available for free.

Now that you’re comfortable with Git, we can begin customizing our new
Rails application.

 Chapter 9 Gems

The art of selecting gems is at the heart of Rails development. I
explained earlier that gems are packages of code, “software libraries,”
that have been developed and tested by other developers. Some gems add
functionality or features to a website. Other gems play a supporting
role, making development easier or implementing basic infrastructure. Gems are open source. They are available at no charge and can be freely
copied and modified.

9.1 Videos

If you have subscribed, two short videos introduce gems:

	What Are Rubygems

	Find Rubygems

9.2 RubyGems

It is a mark of honor to release a gem for public use, and a developer’s
reputation can be established when a gem becomes popular and widely
used. Gems are often created when a developer has used the same code as
a component in more than one web application. He or she will take time
to release the code as a gem. That’s how the Rails ecosystem was built,
gem by gem since 2004.

There is no evaluation or review process in publishing gems. Gems are
hosted on a public server, rubygems.org. Gems
are mostly text files (like any other Ruby code), organized in a
particular format with some descriptive information (in a gemspec
file), and compressed and archived as a single file. A single command,
gem push, uploads a gem to the rubygems.org server for anyone to use.

Over 50,000 gems have been released since rubygems.org was established. Some of these gems are used by one or two developers on their own
projects. Many others have been neglected and abandoned due to lack of
interest. Only a few thousand gems are popular and widely used. As a
Rails developer, you must master the art of finding and evaluating gems
so you can base your applications on the tried-and-true work of others.

There is no single authoritative source of recommendations for gems. The
Ruby Toolbox website categorizes and ranks
many gems by popularity, and it is a good place to begin hunting for
useful gems. Other than that, it is useful to study example applications
and search for blog posts to find which gems are most often recommended. When you find an interesting gem, search Stack
Overflow or
Google to see what people are saying. Look at the gem’s GitHub
repository and check:

	How many issues are open? How many are closed?

	How recent are the commits of patches or updates?

	Is there a CHANGELOG file?

	Is the gem well-documented?

	How many “stars” (people favoriting) or “forks” (people hacking)?

Popular gems are likely to have many reported issues, some of which are
trivial problems or feature requests. Gems that are actively maintained
will have many closed issues and, ideally, only a few open issues. When
you find a gem that has many open issues and no recently closed issues,
you’ve probably found a gem that has been abandoned. Also look at the
commit log, which you’ll find on the GitHub project page in a tab at the
top of the page. Regular and recent activity in the commit log indicates
the gem is actively maintained.

9.3 Rails Gems

Rails itself is a gem that, in turn, requires a collection of other
gems. This becomes clear if you look at the summary page for
Rails on the rubygems.org site. On
that page, you’ll see photos of the Rails core team. More importantly,
you’ll see a list of gems that are required to use Rails:

	actioncable - real-time communication using WebSockets

	actionmailer - framework for email delivery and testing

	actionpack - framework for routing and responding to web requests

	actionview - view templates and rendering

	activejob - queueing slow tasks to run in the background

	activemodel - architecture for model objects

	activerecord - framework for connections to databases

	activesupport - utility classes and Ruby library extensions

	bundler - utility to manage gems

	railties - console commands and generators

	sprockets-rails - support for the Rails asset pipeline

These are the “runtime dependencies” for Rails. Each of these gems has
its own dependencies as well. When you install Rails, a total of 63 gems
are automatically installed in your development environment.

9.4 Gems for a Rails Default Application

In addition to the Rails gem and its dependencies, a handful of other
gems are included in every rails new default starter application:

	sqlite3 - adapter for the SQLite database

	puma - web application server

	sass-rails - enables use of the SCSS syntax for stylesheets

	uglifier - JavaScript compressor

	coffee-rails - enables use of the CoffeeScript syntax for JavaScript

	turbolinks - faster loading of webpages

	jbuilder - utility for encoding JSON data

You may not need a SQLite database, SCSS for stylesheets, or the
others, but many developers use these tools so they are included in the
default starter application.

9.5 Where Do Gems Live?

Gems are files saved in the computer’s disk storage, containing someone
else’s code that you can use in your own application.

When you run a Rails application, gems are loaded into the computer’s
working memory immediately before your own custom code is loaded. Gems
are handled by the Ruby interpreter no differently than your own code. It’s all Ruby code, whether you or someone else wrote it. When you are
building an application in Rails, you don’t need to think about where
gems are stored in your file system. It’s all handled automatically.

Experienced programmers who have used software libraries in other
languages might wonder how it works. Here’s the technical explanation
from the experts. Ruby has a require method that
allows you to import software libraries into your programs. RubyGems
extends the require method, adding gem directories to a $LOAD_PATH. When Rails loads, it will automatically require each of the gems listed
in your Gemfile, finding the gems in the $LOAD_PATH directories.

If you’re a curious person, you might like to see where the gems live. You can run the gem env command to reveal the RubyGems environment
details which are normally hidden from you:

$ gem env
RubyGems Environment:
 - RUBYGEMS VERSION: 2.6.4
 - RUBY VERSION: 2.4.1 (2016-04-26 patchlevel 112) [x86_64-darwin14]
 - INSTALLATION DIRECTORY: /Users/danielkehoe/.rvm/gems/ruby-2.4.1@learn-rails
 - USER INSTALLATION DIRECTORY: /Users/danielkehoe/.gem/ruby/2.3.0
 - RUBY EXECUTABLE: /Users/danielkehoe/.rvm/rubies/ruby-2.4.1/bin/ruby
 - EXECUTABLE DIRECTORY: /Users/danielkehoe/.rvm/gems/ruby-2.4.1@learn-rails/bin
 - SPEC CACHE DIRECTORY: /Users/danielkehoe/.gem/specs
 - SYSTEM CONFIGURATION DIRECTORY: /Users/danielkehoe/.rvm/rubies/ruby-2.4.1/etc
 - RUBYGEMS PLATFORMS:
 - ruby
 - x86_64-darwin-14
 - GEM PATHS:
 - /Users/danielkehoe/.rvm/gems/ruby-2.4.1@learn-rails
 - /Users/danielkehoe/.rvm/gems/ruby-2.4.1@global
.
.
.

If you use RVM, gems are saved to a hidden .rvm folder in your user
directory. A global subfolder contains the Bundler gem. If you’ve
followed the instructions in the “Get Started” chapter to install Rails,
the project-specific learn-rails subfolder contains the Rails gem. If you use Chruby or Rbenv instead of RVM, your gems will be stored in a
different location.

Run the gem which command and you’ll see where the gems live:

$ gem which bundler
/Users/danielkehoe/.rvm/gems/ruby-2.4.1@global/gems/bundler-1.12.5/lib/bundler.rb
$ gem which rails
/Users/danielkehoe/.rvm/gems/ruby-2.4.1@learn-rails/gems/railties-5.1.2/lib/rails.rb

These are details you’ll never need to know, because Ruby on Rails
handles it for you.

You’ll never move or delete gems directly. Instead you’ll manage gems
using the Bundler utility. The key to Bundler
is the Gemfile.

9.6 Gemfile

Every Rails application has a Gemfile. Earlier, I described Rails from
the viewpoint of the “gem hunter,” the developer who wants to assemble
an application from the best open source components he or she can find. To the gem hunter, the Gemfile is the most important file in the
application. It lists each gem that the developer wants to use.

The Gemfile provides the information needed by the
Bundler utility to manage gems.

Bundler’s bundle install command reads the Gemfile, then downloads and
saves each listed gem to the hidden gem folder. Bundler checks to see if
the gem is already installed and only downloads gems that are needed. Bundler checks for the newest gem version and records the version number
in the Gemfile.lock file. Bundler also downloads any gem
dependencies and records the dependencies in the Gemfile.lock file. Between the Gemfile, with its list of gems that will be used by the
application, and the Gemfile.lock file, with its list of
dependencies and version numbers, you have a complete specification of
every gem required to run the application. More importantly, when other
developers install your application, Bundler will automatically install
all the gems (including dependencies and correct versions) needed to run
the application. When you deploy the application to production for
others to use, automated deployment scripts (such as those used by
Heroku) install all the required gems.

Bundler provides a bundle update command when we want to replace any
gems with newer versions. If you run bundle update, any new gem
versions will be downloaded and installed and the Gemfile.lock file
will be updated. Be aware that updating gems can break your application,
so only update gems when you have time to test and resolve any issues. You can run bundle outdated to see which gems are available in newer
versions.

If you want to prevent your fellow developers (or yourself) from
accidentally updating gems, you can specify a gem version number for any
gem in the Gemfile. The Gemfile gives fine-grained control over rules
for updating:

	gem ’rails’, ’5.0.0’ is “absolute” only version 5.0.0 will be
used

	gem ’rails’, ’>= 5.0.0’ is “optimistic” any version newer than
5.0.0 will be used

	gem ’rails’, ’~> 5.0.0’ is “pessimistic”

“Pessimistic” versioning needs some explanation. ~> 5.0.0 means use
any version greater than 5.0.0 and less than 5.1 (any patch version can
be used). ~> 5.0 means use any version greater than 5.0 and less than
6.0 (any minor version can be used).

In general, during development we only lock down any gem versions in the
Gemfile if we know newer versions introduce problems.

Let’s take a look at the Gemfile created by the rails new command.

9.7 Gemfile for a Rails Default Application

Open the Gemfile with your text editor:

source 'https://rubygems.org'

git_source(:github) do |repo_name|
 repo_name = "#{repo_name}/#{repo_name}" unless repo_name.include?("/")
 "https://github.com/#{repo_name}.git"
end

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'
gem 'rails', '~> 5.1.2'
Use sqlite3 as the database for Active Record
gem 'sqlite3'
Use Puma as the app server
gem 'puma', '~> 3.7'
Use SCSS for stylesheets
gem 'sass-rails', '~> 5.0'
Use Uglifier as compressor for JavaScript assets
gem 'uglifier', '>= 1.3.0'
See https://github.com/rails/execjs#readme for more supported runtimes
gem 'therubyracer', platforms: :ruby

Use CoffeeScript for .coffee assets and views
gem 'coffee-rails', '~> 4.2'
Turbolinks makes navigating your web application faster. Read more: https://github.com/turbolinks/turbolinks
gem 'turbolinks', '~> 5'
Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder
gem 'jbuilder', '~> 2.5'
Use Redis adapter to run Action Cable in production
gem 'redis', '~> 3.0'
Use ActiveModel has_secure_password
gem 'bcrypt', '~> 3.1.7'

Use Capistrano for deployment
gem 'capistrano-rails', group: :development

group :development, :test do
 # Call 'byebug' anywhere in the code to stop execution and get a debugger console
 gem 'byebug', platforms: [:mri, :mingw, :x64_mingw]
 # Adds support for Capybara system testing and selenium driver
 gem 'capybara', '~> 2.13'
 gem 'selenium-webdriver'
end

group :development do
 # Access an IRB console on exception pages or by using <%= console %> anywhere in the code.
 gem 'web-console', '>= 3.3.0'
 gem 'listen', '>= 3.0.5', '< 3.2'
 # Spring speeds up development by keeping your application running in the background. Read more: https://github.com/rails/spring
 gem 'spring'
 gem 'spring-watcher-listen', '~> 2.0.0'
end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem
gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

The file you see will be very similar. Some version numbers may be
different if a newer Rails version was released since this was written.

The first line, source ’https://rubygems.org’, directs Bundler to use
the rubygems.org server as a source for any
gems.

Notice that the second uncommented line directs Bundler to use Rails and
specifies a range of acceptable versions. In this case, the Gemfile indicates we can use
any version between 5.1.2 and 5.2.

In the Gemfile you’ll see the gems for a Rails default application, such
as the sqlite3 database gem, which we described earlier. Other gems are commented out
(the lines begin with the # character). These are suggestions and we
can ignore them or remove them.

We won’t use a database for our application but we’ll keep the
gem ’sqlite3’ entry. Configuring Rails for no database is complicated;
it is easier to keep the sqlite3 gem and not use it.

If you are developing your application on a computer using the Linux
operating system, you may need to uncomment and use the statement
gem ’therubyracer’, platforms: :ruby. Linux doesn’t have a built-in
JavaScript interpreter so you must install Node.js in your environment
or else add the therubyracer gem to each project Gemfile. For help, see
Install Ruby on Rails -
Ubuntu.

It’s wise to specify the Ruby version we’re using. This is needed
for automated deployment scripts such as those used by Heroku. We can
add that to the Gemfile:

ruby '2.4.1'

If you add the Ruby version and remove the extra clutter in the Gemfile it will look like
this:

source 'https://rubygems.org'
ruby '2.4.1'
gem 'rails', '~> 5.1.2'

Rails defaults
gem 'sqlite3'
gem 'puma', '~> 3.7'
gem 'sass-rails', '~> 5.0'
gem 'uglifier', '>= 1.3.0'
gem 'coffee-rails', '~> 4.2'
gem 'turbolinks', '~> 5'
gem 'jbuilder', '~> 2.5'
group :development, :test do
 gem 'byebug', platforms: [:mri, :mingw, :x64_mingw]
 gem 'capybara', '~> 2.13'
 gem 'selenium-webdriver'
end
group :development do
 gem 'web-console', '>= 3.3.0'
 gem 'listen', '>= 3.0.5', '< 3.2'
 gem 'spring'
 gem 'spring-watcher-listen', '~> 2.0.0'
end

Try it now. Replace the Gemfile with the simplified code above.

9.8 Adding Gems

I’ve identified several gems that will be useful for our tutorial
application.

I learned about these gems from several places:

	Ruby Toolbox

	RubyFlow

	various blog posts

	example code and starter apps on GitHub

	recommendations from colleagues

We’re adding these gems at the beginning of our development process
since we already know which gems we’ll need. On a real project, you’ll
often discover useful gems and add them to the Gemfile during the
ongoing process of development.

Here are gems we’ll add to the Gemfile:

	bootstrap-sass - front-end framework

	gibbon - access to the MailChimp API

	high_voltage - for static pages like “about”

	jquery-rails - adds the jQuery JavaScript library

Box 9.1.

jQuery and Rails 5.1

Versions of Rails prior to Rails 5.1 included the jquery-rails
gem by default. The gem was dropped from Rails 5.1. We’ll add the jquery-rails gem because it is required by the Bootstrap front-end framework.

We’ll also add utilities that make development easier:

	better_errors - helps when things go wrong

	rails_layout - generates files for an application layout

Open your Gemfile and replace the contents with the following:

source 'https://rubygems.org'
ruby '2.4.1'
gem 'rails', '~> 5.1.2'

Rails defaults
gem 'sqlite3'
gem 'puma', '~> 3.7'
gem 'sass-rails', '~> 5.0'
gem 'uglifier', '>= 1.3.0'
gem 'coffee-rails', '~> 4.2'
gem 'turbolinks', '~> 5'
gem 'jbuilder', '~> 2.5'
group :development, :test do
 gem 'byebug', platforms: [:mri, :mingw, :x64_mingw]
 gem 'capybara', '~> 2.13'
 gem 'selenium-webdriver'
end
group :development do
 gem 'web-console', '>= 3.3.0'
 gem 'listen', '>= 3.0.5', '< 3.2'
 gem 'spring'
 gem 'spring-watcher-listen', '~> 2.0.0'
end

learn-rails
gem 'bootstrap-sass'
gem 'gibbon'
gem 'high_voltage'
gem 'jquery-rails'
group :development do
 gem 'better_errors'
 gem 'rails_layout'
end

Notice that we’ve placed two gems inside a “group.” Specifying a group
for development or testing ensures a gem is not loaded in production,
reducing the application’s memory footprint. Rails let you specify
groups for development, test, or production.

9.9 About the Rails Version

The version of Rails specified in your Gemfile should match the version
that is installed in your gemset.

If you’ve got Rails 5.1, there’s no need to make additional changes to
the Gemfile. Any version beginning with 5.1, such as 5.1.1, will be fine.

If you have Rails 5.2 (which was not available when this was written),
you must get a new version of this book. The
newest available version of the book is listed on the README page of the
learn-rails GitHub repository. If a newer version of the book is not available, you can install Rails 5.0. See the articles Install Rails
and Updating Rails
for details about installing and switching between Rails versions.

9.10 Install the Gems

Each time you edit the Gemfile, you will run bundle install and restart your
web server.

You’ve edited the Gemfile. Install the required gems on your computer:

$ bundle install

The bundle install command will download the gems from the
rubygems.org server and save them to a hidden
directory that is managed by the RVM gemset you’ve specified.

We’ll see all the gems and their dependencies:

Fetching gem metadata from https://rubygems.org/
Fetching version metadata from https://rubygems.org/
Fetching dependency metadata from https://rubygems.org/
Resolving dependencies...
Using rake 11.3.0
Using concurrent-ruby 1.0.2
Using i18n 0.7.0
Using minitest 5.9.1
.
.
.
(many more gems not shown... you get the idea)
.
.
.
Bundle complete! 20 Gemfile dependencies, 73 gems now installed.
Use `bundle show [gemname]` to see where a bundled gem is installed.

You can use your text editor to view the contents of Gemfile.lock
and you will see a detailed listing of every gem and each dependency,
with version numbers. There’s no reason to edit a Gemfile.lock file;
if it is ever in error, delete it and run bundle install to recreate
it.

Run gem list to see all the gems that are loaded into the development
environment:

$ gem list

The list of gems loaded in the environment is the same as the list
specified in the Gemfile.lock file. Here’s how it works. RVM makes a
place for the gems to be stored (the RVM gemset); the Gemfile lists
the gems you want to use; bundle install reads the Gemfile and
installs the gems into the RVM gemset; the Gemfile.lock file records
dependencies and version numbers; and gem list shows you the gems that
are in the gemset and available for use.

9.10.1 Troubleshooting

If your development environment is set up correctly, there should be no
difficulty installing gems with the bundle install command. If your
development environment is not set up correctly, you may see error
messages when Bundler attempts to install the
Nokogiri gem. Nokogiri is often needed by other
gems (it is a dependency of some gems) and Nokogiri can become a
problem to install. Unlike most gems that are written in pure Ruby,
parts of Nokogiri are written in the C language and must be compiled
using system tools that vary with different operating systems. If you
get an error while installing gems, and the message says, “An error
occurred while installing nokogiri,” ask for help on Stack
Overflow.

9.11 Git

Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "add gems"
$ git push origin master

After your first use of git push origin master, you can use the
shortcut git push.

If you get a message:

fatal: Not a git repository (or any of the parent directories): .git

It indicates you are in a folder that has not been initialized with Git. You are probably not in your project directory. Use the Unix command
pwd to see where you are.

If you get a message:

fatal: 'origin' does not appear to be a git repository
fatal: The remote end hung up unexpectedly

It shows that you can’t connect to GitHub to push the changes. To
investigate, enter:

$ git remote show origin

It is not absolutely necessary to use GitHub for this tutorial. We’re
only using it so you’ll be familiar with the workflow of professional
development.

We’re ready to configure the application.

 Chapter 10 Configure

Rails is known for its “convention over configuration” guiding
principle. As applied, the principle reduces the need for many
configuration files. It’s not possible to eliminate all configuration
files, however. Many applications require configuration of settings such
as email account credentials or API keys for external services.

In our tutorial application, we’ll need to store an API key to access MailChimp, which we’ll use
to add visitors’ email addresses to a mailing list. We’ll also need to store credentials so we can send email using
the SendGrid transactional email service.

Rails provides the config/secrets.yml file for our configuration
settings. Any variable that is set in the config/secrets.yml file
can be used elsewhere in our Rails application, providing a single
location for all our configuration variables.

10.1 Configuration Security

GitHub is a good place to store and share code. But when your repos are
public, they are not a good place for secret account credentials. In
fact, any shared Git repository, even a private repo, is a bad place to
store email account credentials or private API keys.

Operating systems (Linux, macOS, Windows) provide mechanisms to set
local environment variables, as does
Heroku and other deployment platforms. With a bit of Unix savvy, you can
set environment variables using the Unix shell. Environment variables
can be accessed from Rails applications and provide an ideal place to
set configuration settings that must remain private.

For the best security, set credentials as Unix environment variables and
only use Unix environment variables in the config/secrets.yml file.

The article Rails Environment
Variables
shows alternatives to using Unix environment variables, if for any
reason you cannot set environment variables on your machine.

10.2 Videos

If you have subscribed, now’s a good time to watch:

	UNIX Environment Variables

	Rails Environment Variables

10.3 About Environment Variables

Unix environment variables are typically set in a file that is read when
starting an interactive shell. The shell is the program that gives us
the command line interface we see in the Terminal or console
application. Unix gives you a choice of shell programs (with names like
sh, bash, ksh, and zsh); each has a slightly different way to
set environment variables. The most common shell program is bash.

Let’s find out what shell you are using:

$ echo $SHELL
/bin/bash

If you see /bin/bash, that’s great! If not, you may have to do some
research to find out how to set environment variables in your shell.

You might be surprised to see a dollar sign in the command. You don’t type the
first dollar sign (it is just the convention that indicates you are entering a
Unix command). You’ll type echo $SHELL to ask the operating system to show the
variable SHELL. The dollar sign in the command tells Unix to return a variable
named SHELL. Try typing echo SHELL without the dollar sign and you’ll see
echo just displays what you type.

When you open a console window, the bash shell reads a configuration
file in your user home directory. You can use a Unix command to list all
the files in your user home directory (the ~ “tilde” character
represents your home directory):

$ ls -1pa ~
.
.
.
.bash_profile
.
.
.

On the Mac, you’ll see .bash_profile. On Linux systems, you’ll see .bashrc.

10.4 Viewing Hidden Files

The files .bash_profile or .bashrc are hidden in the file
browser. You can force the Mac to display hidden files by entering the following
command in the Terminal application:

defaults write com.apple.finder AppleShowAllFiles TRUE; killall Finder

Hidden files will appear in gray in the Finder window.

Use your text editor (Atom or Sublime) to open the .bash_profile or
.bash_rc file.

To open the .bash_profile file with Atom:

$ atom ~/.bash_profile

In Unix, the squiggle (tilde) character is a shortcut to your user home folder.

Open either file and you’ll likely find a command such as:

export PATH=~/.bin:$PATH

That is a command that sets the PATH environment variable. The command
might not be exactly the same but it is likely you will see some
export commands.

You can add the environment variables anywhere in the file. For convenience,
add the environment variables near the end of the file, above any existing
EXPORT statement.

You should use quotes to surround configuration values (credentials) in
the .bash_profile or .bashrc files.

If you don’t have a .bash_profile or .bashrc file in your user
home directory, you can create one.

10.5 Set Environment Variables

You’ll set the following environment variables in your .bashrc or
.bash_profile file:

	SENDGRID_USERNAME

	SENDGRID_PASSWORD

	MAILCHIMP_API_KEY

	MAILCHIMP_LIST_ID

	OWNER_EMAIL

Here are details.

10.5.1 SendGrid

You’ll need your SendGrid username and password. The credentials are the same you use to sign in to the SendGrid website.

Add your SendGrid username and password to your .bash_profile or .bashrc file:

export SENDGRID_USERNAME="example"
export SENDGRID_PASSWORD="secret"

Obviously, change “example” and “secret” to your own credentials.

10.5.2 MailChimp

When visitors sign up to receive a newsletter, we’ll add them to a MailChimp list. Add an environment variable for the MailChimp API key: MAILCHIMP_API_KEY. Sign in to MailChimp to get your API key. Click your name at the top of the navigation menu, then click “Account.” Click “Extras,” then “API keys.” You have to generate an API key; MailChimp doesn’t create one automatically. The MailChimp API key is a long string of characters like a secret code that works like a password. Enter it in your .bash_profile or .bashrc file:

export MAILCHIMP_API_KEY="Your_MailChimp_API_Key"

You’ll need to create a MailChimp mailing list in preparation for our “Mailing List” chapter. Have you already created a MailChimp mailing list? If not, the MailChimp “Lists” page has a button for “Create List.” The list name and other details are up to you.

We’ll need the MAILCHIMP_LIST_ID for the mailing list you’ve
created. To find the list ID, on the MailChimp “Lists” page, click the
“down arrow” for a menu and click “Settings.” At the bottom of the “List
Settings” page, you’ll find the unique ID for the mailing list.

export MAILCHIMP_LIST_ID="Your_List_ID"

Your environment variables are set up to use MailChimp.

10.5.3 Owner Email

You’ll send email messages to this address when a visitor submits a
contact request form. Set OWNER_EMAIL with an email address where you
receive mail.

export OWNER_EMAIL="example@example.com"

Enter an email address and your environment variables will be set up with the site owner email address.

10.5.4 Restart the Terminal Session

Close and reopen your terminal to make sure the environment is updated with any recent changes.

10.5.5 Troubleshooting

Check that the SendGrid user name is set in your Unix environment variables:

$ echo "$SENDGRID_USERNAME"

You should see your SendGrid user name in the console response. Make sure you’ve used underscores consistently and you’ve used SENDGRID_USERNAME not SENDGRID_USER_NAME.

If you have trouble, remember to close and reopen your terminal to make sure the environment includes any recent changes.

On Linux, if you’ve entered the environment variables in your .bashrc file but they don’t seem to work, try setting them in your .bash_profile file instead.

If you’ve set up Unix environment variables but echo "$SENDGRID_USERNAME" doesn’t return the correct variable in the console, you may have a problem with the way you’ve set Unix environment variables. Most computers use the bash shell and you can set environment variables in your .bash_profile or .bashrc files. But not every system is alike. If it seems Unix environment variables are not working, you may have to find a colleague who can help you troubleshoot. If you are having problems, you can continue with the tutorial and add the credentials directly to the config/secrets.yml file.

10.6 The Secrets File

Use your text editor to add the Unix environment variables to the file
config/secrets.yml:

Be sure to restart your server when you modify this file.

Your secret key is used for verifying the integrity of signed cookies.
If you change this key, all old signed cookies will become invalid!

Make sure the secret is at least 30 characters and all random,
no regular words or you'll be exposed to dictionary attacks.
You can use `rails secret` to generate a secure secret key.

Make sure the secrets in this file are kept private
if you're sharing your code publicly.

Shared secrets are available across all environments.

shared:
api_key: a1B2c3D4e5F6

Environmental secrets are only available for that specific environment.

development:
 email_provider_username: <%= ENV["SENDGRID_USERNAME"] %>
 email_provider_password: <%= ENV["SENDGRID_PASSWORD"] %>
 domain_name: example.com
 mailchimp_api_key: <%= ENV["MAILCHIMP_API_KEY"] %>
 mailchimp_list_id: <%= ENV["MAILCHIMP_LIST_ID"] %>
 owner_email: <%= ENV["OWNER_EMAIL"] %>
 secret_key_base: very_long_random_string

test:
 secret_key_base: very_long_random_string

Do not keep production secrets in the unencrypted secrets file.
Instead, either read values from the environment.
Or, use `bin/rails secrets:setup` to configure encrypted secrets
and move the `production:` environment over there.

production:
 email_provider_username: <%= ENV["SENDGRID_USERNAME"] %>
 email_provider_password: <%= ENV["SENDGRID_PASSWORD"] %>
 domain_name: example.com
 mailchimp_api_key: <%= ENV["MAILCHIMP_API_KEY"] %>
 mailchimp_list_id: <%= ENV["MAILCHIMP_LIST_ID"] %>
 owner_email: <%= ENV["OWNER_EMAIL"] %>
 secret_key_base: <%= ENV["SECRET_KEY_BASE"] %>

Be sure to use spaces, not tabs. Make sure there is a space after each
colon and before the value for each entry or you will get a message
“Internal Server Error: mapping values are not allowed” when you start
the web server.

You used quotes to surround configuration values in the .bashrc or
.bash_profile files. Here, in the config/secrets.yml file, you
don’t need quotes when you are importing Unix environment variables.

10.6.1 Domain Name

We’ll need a domain name when we configure email for delivery in
production. For development, use example.com. If you have your own
domain name, you can use that instead. There’s no need to keep the
domain_name configuration variable secret, so we don’t need to set it
in a Unix environment variable.

You can decide for yourself if the owner_email variable really needs
to be secret. Just for caution, I’m suggesting you set it as a Unix
environment variable.

10.6.2 Securing the Secrets File

Some developers take steps to prevent the config/secrets.yml file
from being checked into Git. To prevent the file from being saved to
your repo you could add the filename to the .gitignore file in your
application root directory.

However, you don’t need to keep the config/secrets.yml file
from being checked into Git if you’ve used Unix environment variables
in the config/secrets.yml file. If you only
reveal the SECRET_KEY_BASE used for development or testing, and no one
can access your development machine, no useful secrets will be revealed
in your GitHub repo.

When you deploy to Heroku, the config/secrets.yml file must be in
your Git repository. For that reason, I suggest you save the file in
your Git repo and keep your secrets safe by using environment variables.

10.6.3 Troubleshooting

Remember, in YAML files (with the file extension .yml), indentation
is required (your application will break without it).

Be sure to use spaces, not tabs. Make sure there is a space after each
colon and before the value for each entry.

If you have trouble setting Unix environment variables, you can add
credentials directly to the config/secrets.yml file. If you do so,
you should not check the file into Git until you’ve deleted the secrets
from the file.

Replace the following if you are troubleshooting:

development:
 email_provider_username: <%= ENV["SENDGRID_USERNAME"] %>
 email_provider_password: <%= ENV["SENDGRID_PASSWORD"] %>

with:

development:
 email_provider_username: example
 email_provider_password: 's#cr*t'

In a YAML file, you do not need quotes unless your string contains special characters. If your password contains any of these characters you should surround the string with single quotes:

: { } [] & * # ? | - < > = ! % @ \

Again, DON’T CHECK THE FILE INTO GIT if you’ve hardcoded your
credentials directly in the config/secrets.yml file.

The article Rails Environment Variables
shows alternatives to using Unix environment variables, if for any
reason you cannot set environment variables on your machine.

10.7 Secret Key Base

It’s not necessary to set SECRET_KEY_BASE as an environment variable
on the computer you use for development. Rails generates a unique
SECRET_KEY_BASE in the config/secrets.yml file each time you
create a new Rails application and you don’t need to replace it. If
someone sees the SECRET_KEY_BASE in the config/secrets.yml file in
your GitHub repo, there isn’t anything they can do with it, since they
don’t have access to your local machine.

For your future reference, in case you want to change the
SECRET_KEY_BASE, here’s how. Go to your Rails application directory
and create a new secret token:

$ rails secret
very_long_random_string

And, if you wish, add it to your .bash_profile or .bashrc file:

export SECRET_KEY_BASE="very_long_random_string"

You should always use the environment variable
<%= ENV["SECRET_KEY_BASE"] %> in the production section of your
config/secrets.yml file, otherwise, someone who sees the secret
token in your GitHub repo can gain access to your application in
production. You’ll set the environment variables for production when you
deploy to Heroku.

10.8 Configure Email

Email messages are visible in the console and the log file when you test
the application. If you don’t want to actually send email, you can skip
this step. But it’s more fun when your application can actually send
email.

You can learn more in the article Send Email with Rails.

10.8.1 Connect to an Email Server

Web servers don’t send email. Our Rails application has to connect to an
email server (also known as a mail transfer agent or “mail relay”). In
the early days of the Internet, an experienced system administrator
could set up an SMTP server to
distribute email. Now, because of efforts to reduce spam, it is
necessary to use an established email service to ensure deliverability. In production, for high volume transactional email and improved
deliverability, it is best to use a service such as SendGrid. Alternatives are:

	Amazon SES (Simple Email Service)

	Mailgun

	Mailjet

	Mandrill

	PostageApp

	Postmark

	SparkPost

For our tutorial application, we’ll connect to SendGrid to send email.

For convenience during development, some developers use their own Gmail account to send email. Google has increased security measures for Gmail, so it is difficult to use Gmail to send email from a Rails application. SendGrid is easier to set up and you’re more likely to use it for a real application. That’s why we’ll use it.

In the file config/environments/development.rb, near the end of the
file, find the statement:

config.assets.debug = true

Immediately following, add this:

config.action_mailer.smtp_settings = {
 address: "smtp.sendgrid.net",
 port: 587,
 domain: Rails.application.secrets.domain_name,
 authentication: "plain",
 enable_starttls_auto: true,
 user_name: Rails.application.secrets.email_provider_username,
 password: Rails.application.secrets.email_provider_password
}
ActionMailer Config
config.action_mailer.default_url_options = { :host => 'localhost:3000' }
config.action_mailer.delivery_method = :smtp
config.action_mailer.raise_delivery_errors = true
Send email in development mode?
config.action_mailer.perform_deliveries = true

You can use port 25, 587, or 2525 (some ISPs restrict connections on port 25).

It’s important to add these changes in the body of the configuration
file, before the end keyword. The order isn’t important but don’t add
the configuration statements after the end keyword.

Notice that we are using configuration variables that are set in
the config/secrets.yml file:

	Rails.application.secrets.email_provider_username

	Rails.application.secrets.email_provider_password

We could “hard code” a username and password here but that would expose
confidential data if your GitHub repository is public. Using
configuration variables that are set in the config/secrets.yml file
keeps your secrets safe.

Again, if you need to troubleshoot, you can enter the SendGrid username and password
directly in this file instead of the configuration variables. But for security, don’t commit to
Git with the password hardcoded in this file.

10.8.2 Perform Deliveries in Development

If you want to send real messages when you test the application in
development mode, modify the file
config/environments/development.rb.

After the code you just added, add the statement:

Send email in development mode?
config.action_mailer.perform_deliveries = true

This changes the configuration to send email when you’re working on the
application.

Make sure any code you’ve added to the
config/environments/development.rb file is placed before the final
end keyword. If you add code after the final end keyword, your
application will fail with errors when you start the web server.

Later, after we add a contact form to the tutorial application, the
application will be ready to send email messages.

10.9 Git

Make sure you’re in your application root directory.

Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "add configuration"
$ git push

We’re ready to create a home page for the application.

 Chapter 11 Static Pages and Routing

A Rails application can deliver static web pages just like an ordinary
web server. The pages are delivered fast and no Ruby code is required. We’ll look at simple static pages and learn about Rails routing before
we explore the complexities of dynamic web pages in Rails.

11.1 Add a Home Page

Make sure you are in your project directory.

Start the application server:

$ rails server

Open a web browser window and navigate to
http://localhost:3000/. You’ll see the Rails
default information page.

For the next step, you’ll need to know how to use a text editor such as
Atom or Sublime Text. You can find free tutorials on YouTube. Or, if you prefer a book, try Michael Hartl’s
Learn Enough Text Editor to Be Dangerous.

Use your text editor to create and save a file public/index.html:

<h1>Hello World</h1>

Refresh the browser window and you’ll see the “Hello World” message.

The Rails application server looks for any pages in the public
folder by default.

If no filename is specified in the URL, the server will attempt to
respond with a file named index.html. This is a convention that
dates to 1993; if no filename was specified, one of the first web
servers ever built (the NCSA httpd server) would return a list of all
files in the directory, unless a file named index.html was present. Since then, index.html has been the default filename for a home
page.

11.2 Routing Error

What happens when no file matches the requested web address?

Enter the URL
http://localhost:3000/about.html in
your browser.

You’ll see an error page that shows a routing error.

If you are using Cloud9, add “/about.html” to the URL in the preview
browser window.

11.3 Add an About Page

Use your text editor to create and save a file public/about.html:

<h1>About</h1>

Visit the URL
http://localhost:3000/about.html in
your browser. You’ll see the new “About” page.

By the way, you’ve just done test-driven development (TDD).

11.3.1 Introducing TDD

With test-driven development, a developer tests behavior before
implementing a feature, expecting to see an error condition. Then the
developer implements the feature and sees a successful result to the
test. That’s exactly what you’ve done, in the simplest way.

Beginners tend to think TDD is scary and complicated. Now that you’ve
experienced a simple form of TDD, maybe it won’t be intimidating. Real
TDD means writing tests in Ruby before implementing features, but the
principle is the same.

11.4 Introducing Routes

The guiding principle of “convention over configuration” governs Rails
routing. If the web browser requests a page named “index.html”, Rails
will deliver the page from the public folder by default. No
configuration is required. But what if you want to override the default
behavior? Rails provides a configuration file to control web request
routing.

If you’ve got only one terminal window open, you’ll have to stop the Rails server with Control-c to get your terminal prompt. Here is where it is helpful to have two terminal sessions going in different tabs.

Let’s set the “About” page as the home page.

Open the file config/routes.rb. Remove all the comments and replace
the file with this:

Rails.application.routes.draw do
 root to: redirect('/about.html')
end

This snippet of Rails routing code takes any request to the application
root (http://localhost:3000/) and redirects it
to the about.html file (which is expected to be found in the
public folder).

There is no need to restart your application server to see the new
behavior. If you need to start the server:

$ rails server

Visit the page http://localhost:3000/. You’ll
see the “About” page.

If you still see the “Hello World” page, you didn’t remove the the public/index.html file. Rails will use the index file in the public folder before it checks the routing file for a redirect.

You’ve just seen an example of Rails magic. Some developers complain
that the “convention over configuration” principle is black magic. It’s
not obvious why pages are delivered from the public folder; it just
happens. If you don’t know the convention, you could be left scratching
your head and looking for the code that maps
http://localhost:3000/ to the
public/index.html file. The code is buried deep in the Rails
framework. However, if you know the convention and the technique for
overriding it, you have both convenience and power at your disposal.

11.5 Using the “About” Page

We’ve created an “About” page so we can learn about routing.

For the next chapter, we’ll use the static “About” page to investigate
how a web application works.

Later in the tutorial we’ll create a new “About” page using a different
approach.

 Chapter 12 Request and Response

You’ve configured the tutorial application, created static pages, and
seen the magic of Rails routing.

In this chapter, we’ll investigate the web request-response cycle and
look at the model-view-controller design pattern so you’ll be prepared
to build a dynamic home page.

12.1 Investigating the Request Response Cycle

Remember, at its core, the World Wide Web is nothing more than web
browsers that request files from web servers.

Web browsers make requests. A web server responds to a request by
sending an HTML file. Depending on the headers in the HTML file, the web
browser may make additional requests and get additional CSS, JavaScript,
and image files.

The beauty and simplicity of the World Wide Web architecture, as
conceived by Tim Berners-Lee in 1990, is that the web is nothing more
than a request from a web browser and a response from a web server. Some
web pages now include streaming video, or music, requiring an open
“pipe” between the web server and the web browser, but even so, an
initial request-response cycle delivers the page that sets up the
stream.

We can reduce the mystery of how the web works to its simplest
components when we investigate the request-response cycle. We’ll see
that everything that happens in a web application takes place within the
flow of the request-response cycle.

Let’s look at the request-response cycle.

[image: images/figures/learn-rails-41-request-response]
Figure 12.1: The request-response cycle.

12.1.1 Inside the Browser

We can see the actual request, and the actual response, by using the
diagnostic tools built into the web browser.

Start the application server if it is not already running:

$ rails server

Developers use various web browsers during development. I’ll provide
instructions for Chrome, since it is the most popular. Even if you
prefer Mozilla Firefox or Apple Safari, try this in Chrome, so you can
follow along with the text.

Start our investigation by putting Chrome into “Incognito Mode” with
Command-Shift-N (on a Mac). On Linux, use Ctrl-Shift-N to get in
incognito mode with Chrome. Alternatively, you can clear the browser
cache. This clears any files that were previously cached by the browser.

The Developer Tools view is your primary diagnostic tool for front-end
(browser-based) development, including CSS and JavaScript.

In Chrome on macOS, press Command-Option-I to open the Developer
Tools View in a section of the browser window. Alternatively, you can
find the menu item under View/Developer/Developer Tools.

In Chrome on Windows or Linux platforms, press Shift-Ctrl-I or select
Menu/Tools/Developer Tools.

Initiate the request-response cycle by visiting the “About” page at
http://localhost:3000/about.html.

In the Developer Tools view, under the Network tab, you’ll see files received by the browser
from the web server. There is only one: “about.html”. This is the file
that the browser evaluates to display a web page.

[image: images/figures/learn-rails-41-request]
Figure 12.2: Viewing a request in the Developer Tools View.

Be sure to select the Network tab in the Developer Tools view.

Click the “about.html” file icon. Then click the tab “Headers.” The
diagnostic window shows the entire request sent to the server and the
entire response received by the browser.

[image: images/figures/learn-rails-41-request-headers]
Figure 12.3: Viewing request headers in the Developer Tools View.

Under the heading “General,” you can see the request is composed of:

	request URL (http://localhost:3000/about.html)

	request method (GET)

	status code (200 OK or 304 Not Modified)

You can also see request and response headers:

	request headers (including the User Agent identifier)

	response headers (including last-modified date/time)

You can see the HTML sent to the browser by clicking the Preview or
Response tabs in the view under the Network tab.

Here’s the point of the exercise: The browser’s Developer Tools view shows
all the data exchanged between the browser and server. You’re looking at
everything that passes through the plumbing.

12.1.2 Inside the Server

The browser’s Developer Tools view doesn’t show you what happens on the
server. For that, go to the server logs or the console window.

Started GET "/" for ::1 at ...

Notice how the diagnostic messages in the console window match the
headers in the browser Developer Tools view. The browser’s “Request
Method:GET” matches the server’s “Started GET.”

Notice there are no console log messages for pages delivered from the
public folder.

Soon we’ll see much more in the console window, after we’ve built a
dynamic web page that is assembled by the application server.

12.2 How the Browser Works

What happens after the browser receives a response from the server?

The response is not complete until all files are received (or the
browser reaches a time-out limit). Modern browsers retrieve files
asynchronously; the order and location of the files in the initial HTML
file doesn’t matter because the browser will try to load all the files
before displaying the page.

12.2.1 Document Object Model

When the web browser receives an HTML file, it creates an internal
representation of the page in computer memory, called the
Document Object Model (DOM). It provides a structural representation of the document. The DOM works like an API for HTML documents, allowing you to
modify the content and visual presentation of the page by using JavaScript.

Later in the tutorial, we’ll see how a JavaScript library such as
jQuery can be used to do things
like hiding or revealing HTML elements on a page by manipulating the
DOM.

12.2.2 Rendering

Each time the DOM changes, the browser engine converts the DOM to a visual
representation of the page and renders it in the browser window.

Knowing about the DOM will help you understand what happens in the browser when
it receives a web response. And understanding the DOM will help you work
with JavaScript for front-end programming. But in this book, our focus is on
building a server-side web application in Rails. Let’s see how a Rails
application responds to a web request.

12.3 How the Application Works

Now that we’ve investigated the request-response cycle, let’s dig deeper
to understand what happens inside the Rails application in
response to a browser request. To do so, we’ll need to understand the
model–view–controller concept.

12.3.1 Video Option

This eight minute video introduces the model–view–controller concept:

	Model View Controller in Rails

12.3.2 The Model View Controller Concept

The model–view–controller concept is key to understanding how a Rails
application responds to a browser request.

Here is a diagram that shows what happens in the server during the
request-response cycle.

[image: images/figures/learn-rails-41-mvc-flow]
Figure 12.4: Model–View–Controller in Rails.

You learned earlier that, from the perspective of a software architect,
Rails is organized to conform to the
model–view–controller
software design pattern. This enforces “separation of concerns” to keep
code manageable and organized. The MVC design pattern is optimal for web
applications and is a central organizing principle for Rails.

The MVC design pattern originated in the design of desktop applications. “Model” classes manipulated data; “view” classes created the user
interface; and a “controller” class responded to user interaction.

Some computer scientists feel the architecture of web applications
doesn’t quite match the original MVC design pattern of desktop
applications. We can see the reason for the quibble in the next diagram. The diagram shows the MVC architecture as part of the Rails software
stack.

At the base of the stack is the web browser. A request flows upward
through the layers and encounters the router which dispatches the
request to an appropriate controller.

In a Rails application, there is a single routing file,
config/routes.rb, and multiple controllers, models, and views.

[image: images/figures/learn-rails-41-mvc-stack]
Figure 12.5: Model–View–Controller stack in Rails.

Considering the importance of the router, perhaps we should call our
Rails architecture the RCMV, or Routing-Controller-Model-View,
pattern. Despite the quibble about nomenclature, the architecture is
well understood and used by all Rails developers.

Here’s the step-by-step walk-through of what happens.

When the web browser makes a request, a router component will check
the config/routes.rb file and determine which controller should
handle the request, based on the web address and HTTP protocol. The
controller will obtain any needed data from a model. After obtaining
data, the controller will render a response combining data from the
model with a view component that provides markup and layout. The
response is an HTML file that the controller assembles for the browser
to display.

The model, view, and controller are files you create containing Ruby
code. Each file has a certain structure and syntax based on foundation
model, view, and controller classes defined in the Rails framework. The
model, view, and controller classes you create will inherit behavior
from parent classes that are part of the framework, so you will have
less code to write yourself.

In most Rails applications, a model obtains data from a database,
though some models obtain data from a remote connection to another
server. For example, a User model might retrieve a user name and email
address from a local database. A User model could also obtain a user’s
recent tweets from Twitter or a user’s hometown from Facebook. The
controller can obtain data from more than one model if necessary.

A controller can have more than one action. For example, a User
controller might have actions to display a list of users, or add or
delete a user from a list. The config/routes.rb file matches a web
request to a controller action. In the software architects’ terminology,
each action is a method of the controller class. We use the terms
action and method interchangeably when we talk about a Rails
controller; to be precise, controller actions are implemented as
methods.

In practice, Rails developers try to limit controllers to seven standard
actions: index, show, new, create, edit, update and
destroy actions. A controller that offers these actions is said to be
“RESTful” (a term that refers to representational state
transfer,
another software design abstraction). It’s not important to understand
the abstract principles of RESTful design; recognizing the term and
knowing that Rails controllers have seven standard actions is sufficient
for beginners.

A view file combines Ruby code with HTML markup. Typically there
will be a view file associated with each controller action that displays
a page. An index view might show a list of users. A “show” view might
provide details of a user’s profile. View files look much like ordinary
HTML files but typically contain data in the form of Ruby variables. Often you’ll see Ruby statements such as blocks that iterate through
lists to create tables. Following the “separation of concerns”
principle, it is considered good practice to limit Ruby code in view
files to only displaying data; anything else belongs in a model.

Not every controller action has its own view file. In many controllers,
on completion, the destroy action will redirect to the index view, and
create will redirect to either show or new.

This conceptual overview will be easier to grasp when you actually see
the code for a model, view, and controller. We’ll create model, view,
and controller files in the next chapter.

12.4 Remove the About Page

We’ve been using the static “About” page to investigate the
request-response cycle.

We’re done, so delete the file public/about.html:

$ rm public/about.html

Earlier, we set up the config/routes.rb file. You can leave it in
place. We’ll change it in the next chapter.

Now we’ll look at ways to implement the home page using the full power
of Rails.

 Chapter 13 Dynamic Home Page

Earlier, we saw how Rails can deliver simple static web pages.

Here we’ll build a dynamic home page, illustrating basic concepts you’ll
need to understand Rails.

13.1 User Story

We’ll plan our work with a user story:

Birthday Countdown
As a visitor to the website
I want to see the owner's name
I want to see the owner's birthdate
I want to see how many days until the owner's next birthday
In order to send birthday greetings

This silly home page will help us explore Rails and learn about the Ruby
language.

Our goal is to build a practical web application that you can really
use. Later we’ll replace this silly home page with a useful web page
that encourages visitors to sign up for a mailing list.

13.2 Routes, Model, View, and Controller

We’ll use the model-view-controller design pattern as we build our new
home page.

First, we’ll set up a route so a request URL gets directed to the appropriate controller.

We’ll set up a model so we obtain data we need for the home page.

We’ll set up a view that contains the HTML needed to display our home page.

And finally, we’ll create a controller that responds to the request, obtaining data from the model and rendering the view, sending a response to the web browser.

We can create the routes, model, view, and controller in any order. All must exist before our web application will respond to a request for a home page. In this tutorial, I’ve chosen to create the routes, model, view, and controller in an order that is convenient for learning.

13.3 The Name Game

Much of the art of programming lies in choosing suitable names for our
creations.

We’ll need a model as a source for data about the site owner. Choosing
the most obvious name, we’ll call it the Owner model:

	Owner - the file will be app/models/owner.rb

What about a name for the controller that will render our home page? How
about “Home controller” or “Welcome controller?” Those names are
acceptable. But if we consider our user story, the name “Visitors
controller” is best. A visitor is the actor, so “Visitors controller” is
appropriate:

	VisitorsController - the file will be app/controllers/visitors_controller.rb

Later we’ll see this is a good choice because we’ll create a Visitor
model to handle data about the website visitor. In Rails, there is often
a model with the same name as a controller (though a controller can use
data from multiple models).

13.4 Naming Conventions

Rails is picky about class names and filenames. That’s because of the
“convention over configuration” principle. By requiring certain naming
patterns, Rails avoids complex configuration files.

Before we look at class and filename conventions, here’s a note about
typographic terminology:

	a string is a sequence of characters

	you’re looking at an example of lowercase strings separated by spaces (words!)

	Titlecase means there is an Initial Capital Letter in a string

	CamelCase contains a capital letter in the middle of a string

	snake_case combines words with an underscore character instead of a space

When you write code, you’ll follow rules for class names:

	class Visitor - the model class name is capitalized and singular

	class VisitorsController < ApplicationController - for a controller, combine a pluralized model name with “Controller” in CamelCase

Here are the rules for filenames. They are always lowercase, with words
separated by underscores (snake_case):

	the model filename matches the model class name, but lowercase, for example app/models/visitor.rb

	the controller filename matches the controller class name, but snake_case, for example app/controllers/visitors_controller.rb

	the views folder matches the model class name, but plural and lowercase, for example app/views/visitors

At first the rules may seem arbitrary, but with experience they will
make sense. The rule about no capital letters or spaces in filenames has
its origins in computer antiquity.

If you stray from these naming conventions, you’ll encounter unexpected
problems and frustration.

13.5 Routing

We’ll create the route before we implement the model and controller.

Open the file config/routes.rb. Replace the contents with this:

Rails.application.routes.draw do
 root to: 'visitors#new'
end

Any request to the application root
(http://localhost:3000/) will be directed to
the VisitorsController new action.

Don’t be overly concerned about understanding the exact syntax of the
code. It will become familiar soon and you can look up the details in
the reference documentation, RailsGuides: Routing from the Outside
In.

In general, when you change a configuration file you must restart your
application server. However, the config/routes.rb file is an
exception. You don’t need to restart the server after changing routes.

If you need to start the server:

$ rails server

Visit the page http://localhost:3000/. You’ll
see an error message because we haven’t implemented the controller. The
error message, “uninitialized constant VisitorsController,” means Rails
is looking for a VisitorsController and can’t find it.

13.6 Model

Most Rails models obtain data from a database. When you use a database,
you can use the rails generate model command to create a model that
inherits from the ActiveRecord class and knows how to connect to a
database.

To keep things simple, our tutorial application doesn’t need a database. Instead of inheriting
from ActiveRecord, we create a Ruby class with methods that return the
owner’s name, birthdate, and days remaining until his birthday. This
simple class provides an easy introduction to Ruby code.

Create a file app/models/owner.rb (don’t include the colon punctuation that follows):

class Owner

 def name
 name = 'Foobar Kadigan'
 end

 def birthdate
 birthdate = Date.new(1990, 12, 22)
 end

 def countdown
 today = Date.today
 birthday = Date.new(today.year, birthdate.month, birthdate.day)
 if birthday > today
 countdown = (birthday - today).to_i
 else
 countdown = (birthday.next_year - today).to_i
 end
 end

end

This is your first close look at Ruby code. The oddest thing you’ll see
is the owner’s name, “Foobar Kadigan.” Everything else will make sense
with a bit of explanation.

Keep in mind that we are using a text file to create an abstraction that
we can manipulate in the computer’s memory. Software architects call
these abstractions objects. In Ruby, everything we create and
manipulate is an object. To distinguish one object from another, we
define it as a class, give it a class name, and add behavior in the
form of methods.

The first line class Owner defines the class and assigns a name. At
the very end of the file, the end keyword completes the class
definition.

We define three methods, starting with def (for “method definition”)
and ending with end.

	def name … end

	def birthdate … end

	def countdown … end

Each method contains simple Ruby code that assigns data to a variable. Later, we’ll retrieve the data for use in our view file by
instantiating the class and calling a method. Don’t be discouraged
by the software architects’ terminology; the concepts are simple and
we’ll soon see everything in action.

Ruby makes it easy for a method to return data when called; the value
assigned by the last statement will be delivered when the method is
called.

Looking more closely at the Ruby code inside the method definitions,
you’ll see Ruby uses the = (equals) sign to assign values to a
variable. The variable is named on the left side of the equals sign; a
value is assigned on the right side. We call the equals sign an
assignment operator.

We can assign any value to a variable, including a string (a series of
characters that can be a word or name) such as “Foobar Kadigan.” Ruby
recognizes a string when characters are enclosed in single or double
quotes. Not surprisingly, a number also can be assigned to a variable,
either a whole number (an integer) or a decimal fraction (a float).

More interestingly, any Ruby object can be assigned to a variable. That
helps us “move around” any object very easily, giving us access to the
object’s class methods anywhere we use the variable. We can create our
own objects, as we have by creating the Owner class. Or we can use the
library of objects that are supplied with Ruby. Ruby’s prefabricated
objects are defined by the Ruby API (application programming
interface); essentially the API is a catalog of prebuilt classes that
are building blocks for any application. The Rails API gives us
additional classes that are useful for web applications. Learning the
syntax of Ruby code gets you started with Ruby programming; knowing the
API classes leads to mastery of Ruby.

The Date class is provided by the Ruby API. It is described in the
Ruby API reference documentation. The
Date class has a Date.new method which instantiates (creates) a
new date when supplied with year, month, and day parameters. You can
see this syntax when we assign Date.new(1990, 12, 22) to the
birthdate variable.

Note that Ruby has specific expectations about the syntax of numbers. The Date.new(...) method expects integers. Imagine a September
birthday. You must use Date.new(1990, 9, 22). If you enter a date in
the format Date.new(1990, 09, 22), you’ll get a syntax error “Invalid
octal digit” when you test the application. Ruby expects numbers that
begin with zero to be octal
numbers; you’ll get an error
because octal numbers can’t contain the digit “9.”

Our countdown method contains the most complex code in the class.

First, we set a variable today with today’s date. The Date.today
method creates an object that represents the current date. When the
Date.today method is called, Ruby gets the current date from the
computer’s system clock.

Next we create a birthday variable and assign a new date that combines
today’s year with the month and day of the birthdate. This gives us
the date of Foobar Kadigan’s birthday this year.

The Date class can perform complex calendar arithmetic. The variables
birthdate and today are instances of the Date class. We can use
a greater-than operator to determine if Foobar Kadigan’s birthday is in
the future or the past.

The if ... else ... end structure is a conditional statement. If the
birthday is in the future, we subtract today from birthday to
calculate the number of days remaining until the owner’s birthday, which
we assign to the countdown variable.

If the birthday has already passed, we apply a next_year method to the
birthday to get next year’s birthday. Then we subtract today from
birthday.next_year to calculate the number of days remaining until the
owner’s birthday, which we assign to the countdown variable.

The result might be fractional so we use the utility method to_i to
convert the result to a whole number (integer) before assigning it to
the countdown variable.

This shows you the power of programming in Ruby. Notice that I needed 16
paragraphs and over 600 words to explain 15 short lines of code. We used
only seven Ruby abstractions but they represent thousands of lines of
code in the Ruby language implementation. With knowledge of Ruby syntax
and the Ruby API, a few short lines of code in a text file gives us
amazing ability.

In an upcoming chapter, we’ll look more closely at the syntax and
keywords of the Ruby language. But without knowing more than this, we
can build a simple web application.

Let’s see how we can put this functionality to use on a web page.

13.7 View

The Owner model provides the data we want to see on the Home page.

We’ll create the markup and layout in a View file and add variables that
present the data.

View files go in folders in the app/views/ directory. In a typical
application, one controller can render multiple views, so we make a
folder to match each controller. You can make a new folder using your
file browser or text editor. Or use the Unix mkdir command:

$ mkdir app/views/visitors

Create a file app/views/visitors/new.html.erb (don’t include the colon punctuation that follows):

<h3>Home</h3>
<p>Welcome to the home of <%= @owner.name %>.</p>
<p>I was born on <%= @owner.birthdate %>.</p>
<p>Only <%= @owner.countdown %> days until my birthday!</p>

We’ve created a visitors/ folder within the app/views/
directory. We have only a single new view but if we had more views
associated with the Visitors controller, they’d go in the
app/views/visitors/ folder.

We name our View file new.html.erb, adding the .erb file
extension so that Rails will use the ERB templating engine to interpret
the markup.

There are several syntaxes that can be used for a view file. In this
tutorial, we’ll use the ERB syntax that is most commonly used by
beginners. Some experienced developers prefer to add gems that provide
the Haml or
Slim templating engines. As you might guess, a
View that uses the Haml templating syntax would be named
new.html.haml.

Our HTML markup is minimal, using only the <h3> and <p> tags. The
only ERB markup we add are the <%= ... %> delimiters. This markup
allows us to insert Ruby code which will be replaced by the result of
evaluating the code. In other words, <%= @owner.name %> will appear on the page as Foobar Kadigan.

You may have noticed that we refer to the Owner model with the variable @owner. It will be clear when we create the Visitors controller why we use this syntax (a variable name that begins with the @ character is called an instance variable).

Obviously, if all we wanted to do was include the owner’s name on the page, it would be easier to simply write the text. The Rails implementation becomes useful if the name is retrieved from a database or created programmatically.

We can better see the usefulness of the Owner model when we look at the use of <=
@owner.countdown %>. There is no way to display a calculation using
only static HTML, so Rails gives us a way to display the birthday
countdown calculation.

If you’re a programmer, you might wonder why we only output the variable
on the page. Since we can use ERB to embed any Ruby code, we could
perform the calculation right on the page by embedding
<%= (Date.new(today.year, @owner.birthdate.month,
@owner.birthdate.day) - Date.today).to_i %>. If you’ve used JavaScript
or PHP, you may have performed calculations like this, right on the
page. Rails would allow us to do so, but the practice violates the
“separation of concerns” principle that encourages us to perform complex
calculations in a model and only display data in the view.

Before we can display the home page, we need to create the Visitors
controller.

13.8 Controller

The Visitors controller is the glue that binds the Owner model with the
VisitorsController#new view.

Note: When we refer to a controller action, we use the notation
“VisitorsController#new,” joining the controller class name with the
action (method) that renders a page. In this context, the # character
is only a documentation convention.

Note: VisitorsController will be the class name and
visitors_controller.rb will be the filename. The class name is
written in camelCase (with a
hump in the middle, like a camel) so we can combine two words without a
space.

Unix commands get messy when filenames include spaces so we create a
filename that combines two words with an underscore (sometimes called
“snake_case”).

Create a file app/controllers/visitors_controller.rb (don’t include the colon punctuation that follows):

class VisitorsController < ApplicationController

 def new
 @owner = Owner.new
 end

end

We define the class and name it class VisitorsController, inheriting
behavior from the ApplicationController class which is defined in the
Rails API.

We only need to define the new method. We create an instance
variable named @owner and assign an instance of the Owner model. Any
instance variables (variables named with the @ character) will be
available in the corresponding view file.

If we don’t instantiate the Owner model, we’ll get an error when the
controller new action attempts to render the view because we use the
@owner instance in the view file.

Keep in mind the purpose of the controller. Each controller action
(method) responds to a request by obtaining a model (if data is needed)
and rendering a view.

You’ve already created a view file in the app/views/visitors folder. The new action of the VisitorsController renders the template
app/views/visitors/new.html.erb.

The new method is deceptively simple. Hidden behavior inherited from
the ApplicationController does all the work of rendering the view. We
can make the hidden code explicit if we wish to. It would look something
like this:

class VisitorsController < ApplicationController

 def new

 @owner = Owner.new
 render 'visitors/new'
 end

end

This is an example of Rails magic. Some developers complain this is
black magic because the “convention over configuration” principle leads
to obscurity. Rails often offers default behavior that looks like magic
because the underlying implementation is hidden in the depths of the
Rails code library. This can be frustrating when, as a beginner, you
want to understand what’s going on.

Revealing the hidden code, we see that invoking the new method calls a
render method supplied by the ApplicationController parent class. The
render method searches in the app/views/visitors directory for a
view file named new (the file extension .html.erb is assumed by
default). The code underlying the render method is complex. Fortunately, all we need to do is define the method and instantiate the
Owner model. Rails takes care of the rest.

As a beginner, simply accept the magic and don’t confound yourself
trying to find how it works. As you gain experience, you can dive into
the Rails source code to unravel the magic.

13.9 Scaffolding

This tutorial aims to give you a solid foundation in basic concepts. The
model–view–controller pattern is one of the most important. I’ve found
the best way to understand model–view–controller architecture is to
create and examine the model, view, and controller files.

As you continue your study of Rails, you’ll find other tutorials that
use the scaffolding shortcut. For example, Rails Guides: Getting
Started with Rails
includes a section “Getting Up and Running Quickly with Scaffolding”
which shows how to use the rails generate scaffold command to create
model, view, and controller files in a single operation. Students often
use scaffolding to create simple Rails applications.

In practice, I’ve observed that working Rails developers seldom use
scaffolding. There’s nothing wrong with it; it just seems that
scaffolding doesn’t offer much that can’t be done as quickly by hand.

13.10 Test the Application

We’ve created a model, view, and controller. Now let’s run the
application.

Enter the command:

$ rails server

Open a web browser window and navigate to
http://localhost:3000/. You’ll see our new home
page.

[image: images/figures/learn-rails-42-home]
Figure 13.1: Dynamic home page shows days until a birthday.

It’s a very simple web page but it uses Ruby to calculate the countdown
to the birthday. And the underlying code conforms to the conventions and
structure of Rails.

13.11 Git

At this point, you might have the Rails server running in your console
window. We’re going to run a git command in the console now.

You might think you have to enter Control-c to shut down the server and
get the command prompt. But that’s not necessary. You can open more than
one console view. Your terminal application lets you open multiple
windows or tabs. If you open multiple tabs, you can easily switch between console views
without using a lot of screen real estate. If you haven’t tried it, now is a good time. On the Mac, Command+t opens a new tab in the terminal application. It is
convenient to have a console tab open for the server and another for
various Unix commands.

Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "dynamic home page"
$ git push

Now let’s take a look at troubleshooting.

 Chapter 14 Troubleshoot

In the last chapter, we built a dynamic home page and learned about the
model–view–controller architecture of Rails. There was a lot to learn,
but the code was simple, and I hope it worked the first time you tried
it.

Before we do any more work on our tutorial application, we need to learn
about troubleshooting and debugging. As a software developer, you’ll
spend a lot of time with code that doesn’t work. You’ll need tools and
techniques to diagnose problems.

14.1 Git

In this chapter we’ll make changes to the application just for
troubleshooting.

Before you get started, make sure the work you’ve done is committed to
your git repository. Use the git status command to check:

$ git status

You should see:

On branch master
nothing to commit, working directory clean

If git status reports any uncommitted changes, go back to the last
step in the previous chapter and commit your work to the git repository
before continuing. At the end of this chapter, we’re going to throw away
the work we’ve done in this chapter. We don’t want to accidentally throw
away work from the previous chapter so make sure it is committed to the
repository.

14.2 Interactive Ruby Shell

There will be times when you want to try a snippet of Ruby code just to
see if it works. Your tool will be IRB, the Interactive Ruby shell.

IRB is a Ruby interpreter that runs from the command line. It executes
any Ruby code and provides an immediate response, allowing you to
experiment in real-time.

Let’s try it.

$ irb
>>

The command irb launches the program and displays a prompt that shows
your Ruby version, a line number, and an arrow. I’ll just show a
simple prompt in the examples, instead.

If you enter a valid
Ruby expression, the interpreter will display the result of evaluating
the expression.

Try simple arithmetic:

>> n = 2
 => 2
>> n + 2
 => 4

Wow! You are using your computer for simple math. Maybe you can delete
the calculator app from your phone.

IRB will evaluate any Ruby expression and helps you quickly determine if
syntax and logic is correct.

14.2.1 IRB for Blocks of Code

At first glance, it appears IRB works on just one line of code.

Actually, IRB can handle multiple lines of code. Try it:

>> n = 10
=> 10
>> if n < 10
>> puts "small"
>> else
?> puts "big"
>> end
big
=> nil
>>

Here we set n = 10 and then enter a conditional statement
line-by-line. After we enter the final end, IRB interprets the code
and outputs the result.

You’ll often enter more than one line of code in IRB. If you find
yourself frustrated because you’ve entered typos and had to enter the
same code repeatedly, you can use IRB to load code you’ve saved in a
file:

>> load './mytest.rb'

14.2.2 Quitting IRB

It can be very frustrating to find you are stuck inside IRB. Unlike most
shell commands, you can’t quit with Control-c. Enter Control-d or type
exit to quit IRB:

$ irb
>> exit

14.2.3 Learn More About IRB

Here’s an entertaining way to learn about IRB:

	Why’s (Poignant) Guide to Ruby (with a Basic Introduction to IRB)

Here’s a more conventional way to learn about IRB:

	The Pragmatic Programmer’s Guide

14.2.4 Beyond IRB

If you ask experienced Rails developers for help with IRB, they’ll often
recommend you switch to Pry. Pry is a powerful
alternative to the standard IRB shell for Ruby. As you gain experience,
you might take a look at Pry to see what the enthusiasm is all about. But for now, as a beginner trying out a few lines of Ruby code, there’s
no need to learn Pry.

14.3 Rails Console

IRB only evaluates expressions that are defined in the Ruby API. IRB
doesn’t know Rails.

It’d be great to have a tool like IRB that evaluates any expression
defined in the Rails API. The tool exists; it’s called the Rails
console. It is particularly useful because it loads your entire Rails
application. Your application will be running as if the application was
waiting to respond to a web request. Then you can expose behavior of any
pieces of the web application.

$ rails console
...
Loading development environment (Rails 5.x.x)
>>

The Rails console behaves like IRB but loads your Rails development
environment. The prompt shows it is ready to evaluate an expression.

Let’s use the Rails console to examine our Owner model:

>> myboss = Owner.new
 => #<Owner:0x007fc18e91faf8>

We’ve created a variable named myboss and created a new instance of
the Owner class. The Rails console responds by displaying the unique
identifier it uses to track the object. The identifier is not
particularly useful, except to show that something was created.

If you’re unsure about the difference between an instance and a
class, we’ve just seen that we can make one or more instances of a
class by calling the Owner.new method. When we specify the Owner
class, the class definition is loaded into the computer’s working memory
(our development environment) from the class definition file on disk. Then we can use the Owner.new method to make one or more instances of
the Owner class. Each instance is a unique object with its own data
attributes but the same behavior as other objects instantiated from its
class.

Let’s assign the name of our boss to a variable called name:

>> name = myboss.name
 => "Foobar Kadigan"

Our variable myboss is an instance of an Owner class so it responds
to the method Owner.name by returning the owner’s name.

We want to show respect to our boss so we’ll perform some string
manipulation:

>> name = 'Mr. ' + name
 => "Mr. Foobar Kadigan"

We’re done for now. When we quit the Rails console or shut down the
computer the Owner class definition remains stored on disk but the
instances disappear. The bits that were organized to create the variable
name will evaporate into the ether.

Actually, the bits are still there, in the form of logic states in the
computer’s chips, but they have no meaning until another program uses
them.

Enter Control-d or type exit to quit the Rails console.

The Rails console is a useful utility. It is like a handy calculator for
your code. Use it when you need to experiment or try out short code
snippets.

14.4 Rails Logger

As you know, a Rails application sends output to the browser that makes
a web request. On every request, it also sends diagnostic output to the
server log file. Depending on whether the application is running in
the development environment or in production, the log file is here:

	log/development.log

	log/production.log

In development, everything written to the log file appears in the
console window after you run the rails server command. Scrolling the
console window is a good way to see diagnostics for every request.

Here’s what you see in the log after you visit the application home
page:

Started GET "/" for ::1 at ...
Processing by VisitorsController#new as HTML
 Rendering visitors/new.html.erb within layouts/application
 Rendered visitors/new.html.erb within layouts/application (6.6ms)
Completed 200 OK in 650ms (Views: 634.4ms | ActiveRecord: 0.0ms)

You may have more than one console window open in the terminal
application. If you don’t see your log output in your terminal, check if
you have tabs with other windows.

Here’s the best part. You can add your own messages to the log output by
using the Rails logger. Let’s try it out.

Modify the file app/controllers/visitors_controller.rb:

class VisitorsController < ApplicationController

 def new
 Rails.logger.debug 'DEBUG: entering new method'
 @owner = Owner.new
 Rails.logger.debug 'DEBUG: Owner name is ' + @owner.name
 end

end

Visit the home page again and you’ll see this in the console output:

Started GET "/" for ::1 at ...
Processing by VisitorsController#new as HTML
DEBUG: entering new method
DEBUG: Owner name is Foobar Kadigan
 Rendering visitors/new.html.erb within layouts/application
 Rendered visitors/new.html.erb within layouts/application (1.1ms)
Completed 200 OK in 81ms (Views: 72.2ms | ActiveRecord: 0.0ms)

If you really needed to do so, you could add a logger statement at every
step in the application. You could see how the application behaves, step
by step. And you could “print” the value of every variable at every
step. You’ll never need diagnostics at this level of detail in Rails,
but the logger is extremely useful when you are trying to understand
unexpected behavior.

Let’s add logger statements to the Owner model. Modify the file
app/models/owner.rb:

class Owner

 def name
 name = 'Foobar Kadigan'
 end

 def birthdate
 birthdate = Date.new(1990, 12, 22)
 end

 def countdown
 Rails.logger.debug 'DEBUG: entering Owner countdown method'
 today = Date.today
 birthday = Date.new(today.year, birthdate.month, birthdate.day)
 if birthday > today
 countdown = (birthday - today).to_i
 else
 countdown = (birthday.next_year - today).to_i
 end
 end

end

We added the Rails.logger.debug statement to the Owner.countdown
method.

Visit the home page and here’s what you’ll see in the console output:

Started GET "/" for ::1 at ...
Processing by VisitorsController#new as HTML
DEBUG: entering new method
DEBUG: Owner name is Foobar Kadigan
 Rendering visitors/new.html.erb within layouts/application
DEBUG: entering Owner countdown method
 Rendered visitors/new.html.erb within layouts/application (0.7ms)
Completed 200 OK in 69ms (Views: 61.1ms | ActiveRecord: 0.0ms)

You’ll often need to “get inside” the model or controller to see what’s
happening. The Rails logger is the best tool for the job.

Here are some tricks for the Rails logger.

In a controller, you can use the method logger on its own. In a model,
you have to write Rails.logger (both class and method).

You can use any of the methods logger.debug, logger.info,
logger.warn, logger.error, or logger.fatal to write log messages. By default, you’ll see any of these messages in the development log. Log
messages written with the logger.debug method will not be recorded in
a production log file.

If you want your log messages to stand out, you can add formating code
for color:

Rails.logger.debug "\033[1;34;40m[DEBUG]\033[0m " + 'will appear in bold blue'

For more about the Rails logger, see the RailsGuide: Debugging Rails
Applications.

14.5 Revisiting the Request-Response Cycle

Earlier, when we investigated the request-response cycle, we looked in
the server log to see the response to the web browser request.

Now, with debug statements in the controller and model, we’ll see
messages showing the server’s traverse of the model-view-controller
architecture.

Started GET "/" for ::1 at ...
Processing by VisitorsController#new as HTML
DEBUG: entering new method
DEBUG: Owner name is Foobar Kadigan
 Rendering visitors/new.html.erb within layouts/application
DEBUG: entering Owner countdown method
 Rendered visitors/new.html.erb within layouts/application (0.7ms)
Completed 200 OK in 69ms (Views: 61.1ms | ActiveRecord: 0.0ms)

Notice how the diagnostic messages in the console window match the
headers in the browser Developer Tools view. The browser’s “Request
Method:GET” matches the server’s “Started GET.” The browser’s “Status Code: 200”
matches the server’s “Completed 200 OK” (you might have to clear the
browser’s cache if the browser is showing “304 Not Modified”).

We can see evidence of the model-view-controller architecture. “Processing by VisitorsController#new” shows the program flow entering
the controller. Our debug statements show we enter the new method and
reveal the value of the Owner name. The next debug statement reveals the
flow has passed to the Owner model. A diagnostic message shows the
controller has rendered the visitors/new.html.erb view file. Finally, the “Completed 200 OK” message indicates the response has been
sent to the browser.

As we learned, the model-view-controller architecture is an abstract
design pattern. We’ve seen it reflected in the file structure of the
Rails application directory. Now we can see it as activity in the server
log.

14.6 The Stack Trace

The Rails logger is extremely useful if you want to insert messages to
show program flow or display variables. But there will be times when
program flow halts and the console displays a stack trace.

Let’s deliberately create an error condition and see an error page and
stack trace.

Modify the file app/controllers/visitors_controller.rb:

class VisitorsController < ApplicationController

 def new
 Rails.logger.debug 'DEBUG: entering new method'
 @owner = Owner.new
 Rails.logger.debug 'DEBUG: Owner name is ' + @owner.name
 DISASTER
 end

end

Visit the home page and you’ll see an error page:

[image: images/figures/learn-rails-43-error]
Figure 14.1: Error page.

You’ll see this error page because we’ve installed the
better_errors gem. Without the better_errors gem, you’d see the default Rails error page
which is quite similar.

In the console log, the stack trace will show everything that happens
before Rails encounters the error:

Started GET "/" for ::1 at ...
Processing by VisitorsController#new as HTML
DEBUG: entering new method
DEBUG: Owner name is Foobar Kadigan
Completed 500 Internal Server Error in 8ms (ActiveRecord: 0.0ms)

NameError - uninitialized constant VisitorsController::DISASTER:
 app/controllers/visitors_controller.rb:7:in `new'
 .
 .
 .

To save space, I’m only showing the top line of the stack trace. I’ve
eliminated about sixty lines from the stack trace.

Don’t feel bad if your reaction to a stack trace is an immediate, “TMI!”
Indeed, it is usually Too Much Information. There are times when it pays
to carefully read through the stack trace line by line, but most often,
only the top line of the stack trace is important.

In this case, both the error page and the top line of the stack trace
show the application failed (I prefer to say, “barfed”) when it encountered an
“uninitialized constant” at line 7 of the
app/controllers/visitors_controller.rb file in the new method. It’s easy to find line 7 in the file and see that is exactly where we
added a string that Rails doesn’t understand.

The point of this exercise is to encourage you to read the top line of
the stack trace and use it to diagnose the problem. I’m always surprised
how many developers ignore the stack trace, probably because it looks
intimidating.

14.7 Raising an Exception

As you just saw, you can purposefully break your application by adding
characters that Rails doesn’t understand. However, there is a better way
to force your program to halt, called raising an exception.

Let’s try it. Modify the file
app/controllers/visitors_controller.rb:

class VisitorsController < ApplicationController

 def new
 Rails.logger.debug 'DEBUG: entering new method'
 @owner = Owner.new
 Rails.logger.debug 'DEBUG: Owner name is ' + @owner.name
 raise 'Deliberate Failure'
 end

end

You can throw an error by using the raise keyword from the Ruby API.
You can provide any error message you’d like in quotes following
raise.

Here’s the console log after you try to visit the home page:

Started GET "/" for ::1 at ...
Processing by VisitorsController#new as HTML
DEBUG: entering new method
DEBUG: Owner name is Foobar Kadigan
Completed 500 Internal Server Error in 6ms (ActiveRecord: 0.0ms)

RuntimeError - Deliberate Failure:
 app/controllers/visitors_controller.rb:7:in `new'
 .
 .
 .

Before we continue, let’s remove the deliberate failure. Modify the file
app/controllers/visitors_controller.rb:

class VisitorsController < ApplicationController

 def new
 Rails.logger.debug 'DEBUG: entering new method'
 @owner = Owner.new
 Rails.logger.debug 'DEBUG: Owner name is ' + @owner.name
 end

end

Rails and the Ruby API provide a rich library of classes and methods to
raise and handle exceptions. For example, you might want to display an
error if a user enters a birthdate that is not in the past. Rails
includes various exception handlers to display errors in production so
users will see a helpful web page explaining the error.

14.8 Git

There’s no need to save any of the changes we made for troubleshooting.

You could go to each file and carefully remove the debugging code you
added. But there’s an easier way.

Check which files have changed:

$ git status
Changes not staged for commit:
(use "git add ..." to update what will be committed)
(use "git checkout -- ..." to discard changes in working directory)
#
modified: app/controllers/visitors_controller.rb
modified: app/models/owner.rb
#
no changes added to commit (use "git add" and/or "git commit -a")

Use Git to revert your project to the most recent commit:

$ git reset --hard HEAD

The Git command git reset –hard HEAD discards any changes you’ve made
since the most recent commit. Check the status to make sure:

$ git status
On branch master
nothing to commit, working directory clean

We’ve cleaned up after our troubleshooting exercise.

 Chapter 15 Just Enough Ruby

Experienced Rails developers debate whether beginners should study Ruby
before learning Rails.

By all means, if you love the precision and order of programming
languages, dive into the study of Ruby from the beginning. But most
people don’t delay starting Rails while learning Ruby; realistically,
you’ll retain more knowledge of Ruby if you learn it as you build things
in Rails. That is the approach we’ve taken in this book. You’ve already
built a simple Rails application and used Ruby as you did so.

15.1 Reading Knowledge of Ruby

What you need, more than anything, when you start working with Rails, is
reading knowledge of Ruby.

With a reading knowledge of Ruby you’ll avoid feeling overwhelmed or
lost when you encounter code examples or work through a tutorial. Later,
as you tackle complex projects and write original code, you’ll need to
know enough of the Ruby language to implement the features you need. But
as a student, you’ll be following tutorials that give you all the Ruby
you need. Your job is to recognize the language keywords and use the
correct syntax when you type Ruby code in your text editor.

To that end, this chapter will review the Ruby keywords and syntax
you’ve already learned. And you’ll extend your knowledge so you’ll be
prepared for the Ruby you’ll encounter in upcoming chapters.

15.2 Ruby Example

To improve your reading knowledge of Ruby, we’ll work with an example
file that contains a variety of Ruby expressions.

We won’t use this file in our tutorial application, so you’ll delete it
at the end of this chapter. But we’ll approach it as real Ruby code, so
make a file and copy the code using your text editor.

First we have to consider where the file should go. It will not be a
model, view, controller, or any other standard component of Rails. Rails
has a place for miscellaneous files that don’t fit in the Rails API.
We’ll create the file in the lib/ folder. That’s the folder you’ll
use for any supporting Ruby code that doesn’t fit elsewhere in the Rails
framework.

Create a file lib/example.rb:

class Example < Object

 # This is a comment.

 attr_accessor :honorific
 attr_accessor :name
 attr_accessor :date

 def initialize(name,date)
 @name = name
 @date = date.nil? ? Date.today : date
 end

 def backwards_name
 @name.reverse
 end

 def to_s
 @name
 end

 def titled_name
 @honorific ||= 'Esteemed'
 titled_name = "#{@honorific} #{@name}"
 end

 def december_birthdays
 born_in_december = []
 famous_birthdays.each do |name, date|
 if date.month == 12
 born_in_december << name
 end
 end
 born_in_december
 end

 private

 def famous_birthdays
 birthdays = {
 'Ludwig van Beethoven' => Date.new(1770,12,16),
 'Dave Brubeck' => Date.new(1920,12,6),
 'Buddy Holly' => Date.new(1936,9,7),
 'Keith Richards' => Date.new(1943,12,18)
 }
 end

end

In some ways, this Ruby code is like a poem from Lewis Carroll:

'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

"Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
The frumious Bandersnatch!"

The poem corresponds to the rules of English syntax but is nonsense.

The code follows the rules of Ruby syntax, and unlike the poem, uses
meaningful words. But it is unclear how the author intends anyone to use
the code. If you’re beginning a career as a Rails developer, this won’t
be the last time you look at code and wonder what the author was
intending. In this case, I just want to give you some code that
illustrates typical Ruby syntax and structure.

15.3 Ruby Keywords

When reading Ruby code, the first challenge is determining which words
are Ruby keywords and which were made up by the developer. Code is only
strings of characters. But some strings have special meaning for
everyone and all others are arbitrary words that only have meaning to an
individual developer.

As you gain experience, you’ll recognize Ruby keywords because you’ve
seen them before.

You’ll also recognize a developer’s made-up words because of their
position relative to other words and symbols. Some made-up words will be
obvious because they are just too idiosyncratic to be part of the Ruby
language. For example, you’ll rightly guess that myapp or fluffycat
are not part of the Ruby language.

If you’re reading a Lewis Carroll poem, you could look up words in a
dictionary to see if you find them.

There is only one way to be sure which words are part of the Ruby
language: Check the Ruby API.

As an exercise, pick one of the words from the example code that you
think might be a Ruby keyword and search the API to find it.

If you want to be a diligent student, you can check every keyword in the
example code to find out whether it is in the Ruby API. It is more
practical to learn to recognize Ruby keywords, which we’ll do next.

15.3.1 API Documentation

The Ruby API documentation lists every keyword in the language:

	ruby-doc.org - the official Ruby API

	apidock.com/ruby - Ruby API docs with usage notes

15.4 Ruby Files

When we write code, we save it in files. We’ve added our miscellaneous
example file to the lib/ folder.

By convention, Ruby files end with the file extension .rb.

15.4.1 Using IRB

In the “Troubleshooting” chapter, you used IRB (the Interactive Ruby
Shell) to try out Ruby code. You can use IRB to try out the example code
in the console.

$ irb
>> load 'lib/example.rb'
=> true
>> require 'date'
=> true
>> ex = Example.new('Daniel',nil)
=> #<Example:0x007fb46c9eecd8 @name="Daniel", @date=#<Date: 2015-12-23 ...
>> list = ex.december_birthdays
=> ["Ludwig van Beethoven", "Dave Brubeck", "Keith Richards"]
>>

Entering the load directive and the filename brings the code into IRB.

The require ’date’ statement loads the Ruby date library.

The statement ex = Example.new(’Daniel’,nil) creates an object from
the Example class.

The ex.december_birthdays method returns an array of names.

Remember you can use Control-d to exit from IRB.

Now, for practice, we’ll read the Ruby code.

15.5 Whitespace and Line Endings

Whitespace characters such as spaces and tabs are generally ignored in
Ruby code, except when they are included in strings. There are several
special cases where whitespace is significant in Ruby expressions but
you are not likely to encounter these cases as a beginning Rails
developer.

Some programming languages (Java and the C family) require a semicolon
as a terminator character at the end of statements. Ruby does not
require a semicolon to terminate a statement. Instead, if the Ruby code
on a line is a complete expression, the line ending signifies the end of
the statement. If the line ends with a + or other operator, or a
backslash character, the statement is split into multiple lines.

15.6 Comments

Ruby ignores everything that is marked as a comment. Use comments for
notes to yourself or other programmers.

 # This is a comment.

You can also turn code into comments if you don’t want the code to run. This is a common trick when you want to “turn off” some part of your
code but you don’t want to delete it just yet, because you are trying
out alternatives.

15.7 The Heart of Programming

Three principles are at the heart of all programming:

	syntax

	conditional execution

	transformation

Computers allow no ambiguity. Code must exactly follow the syntax of a
language. Typos, guesses, and code that is almost-but-not-quite right
will simply fail, often without any helpful error messages.

Computers seem intelligent because they can execute code
conditionally. You can write a program so that given one set of
conditions, certain parts of the code will execute, and given different
conditions, other parts of the code will execute.

Lastly, programs are written to transform abstractions from one form to
another. That’s why computer programs look like math. When we learn
simple arithmetic, we learn we can take the symbols for numbers and add
them together to make a different number. Computer programs do more than
add numbers; a program can transform words and other abstractions.

15.8 Assignment

In Ruby, like many other programming languages, the equals sign
indicates we are assigning a value.

 name = 'Foobar Kadigan'

Assignment is the first step to transformation. Here ’Foobar Kadigan’
is a string of letters. The equals sign is the assignment operator. And
name is a variable that stores the value so it can be easily reused. We don’t have to type ’Foobar Kadigan’ every time we need a name; we
can use name instead.

Just as we can assign a value to a variable, we can reassign a new value
whenever we want. That is why we call them variables; the value can
vary.

 name = 'Mr. Foobar Kadigan'

Variables can be assigned strings of letters, numbers, or anything else. “Anything else” is very broad because we can use Ruby to make complex
structures that contain data and also “do work.” These complex
structures are objects and we say that Ruby is object-oriented
because it is easy to work with objects in Ruby.

15.9 Object-Oriented Terminology

Software architects use a common vocabulary to talk about programming
languages:

	class

	instance or object

	method

	attribute or property

	inheritance

	class hierarchy

There are three ways to learn what these words mean. You can memorize
the definitions. You can write code and intuitively grasp the meanings. Or you can gain an understanding by applying metaphors.

15.9.1 Houses

For example, some programming textbooks attempt to explain a class
like this: A blueprint for a house design is like a class definition. All the houses built from that blueprint are objects of a class we
could call House.

15.9.2 Vehicles

Or: The concept of “vehicle” is like a class. Vehicles can have
attributes, like color or number of doors. They have behavior, or
methods, like buttons that turn on lights or honk a horn. The concepts
of “truck” or “car” are also classes, inheriting common
characteristics from a superclass “vehicle.” The blue car in your
driveway with four doors is an object, a particular instance of the
class “car.”

15.9.3 Cookies

I like the cookie metaphor the best.

A class definition is like a cookie cutter.

Bits in the computer memory are like cookie dough.

The cookie cutter makes as many individual cookies as you want. Each
cookie is an instance of the Cookie class, with the same shape and
size as the others. Cookies are objects.

You can decorate each cookie with sprinkles, which are attributes that
are unique to each instance. Some cookies get red sprinkles, some get
green, but the shape remains the same.

Running a program is like baking. The cookies change state from raw to
cooked.

Sticking a toothpick in a cookie is like calling a method. The method
returns a result that tells you about the state: Is it done?

15.9.4 Limitations of Metaphors

Metaphors are imperfect.

If baking was like running a program, all the cookies would disappear as
soon as the oven was turned off.

When a software program contains a “car” model, it doesn’t fully model
cars in the physical world. It represents an abstraction of
characteristics a programmer deems significant. Let’s make a model for a
Person that contains an attribute Gender. What values are possible for
the attribute Gender? For many years, Facebook offered two choices, male
and female. In 2014, Facebook suddenly offered a choice of over fifty
gender terms. As Sarah Mei discusses in a blog post, Why Gender is a
Text Field on
Diaspora, your
assumptions have consequences when you build a model.

Most classes in software APIs don’t model anything in the real world. They typically represent an abstraction, like an Array or a Hash, which
inherits characteristics from another abstraction, for example, a
Collection.

Given the limitations of metaphors, maybe it is easier to simply say
that software allows us to create abstractions that are “made real” and
then manipulated and transformed. Terminology such as class and
instance describe the abstractions and the relationships among them.

15.9.5 Definitions

Here are definitions for some of the terms we encounter when we consider
Rails from the perspective of a software architect:

class
	an abstraction that encapsulates data and behavior

class definition
	written code that describes a class

instance or object
	a unique copy of a class that exists only while a program is running

inheritance
	a way to make a class by borrowing from another class

class hierarchy
	classes that are related by inheritance

method
	a command that returns data from an object

attribute or property
	data that can be set or retrieved from the object

variable
	a name that can be assigned a value or object

expression or statement
	any combination of variables, classes, and methods that returns a
result

Some of these terms are abstractions that are “made real” in the Ruby
API (such as class and method); others are just terms that describe
code, much like we use terms such as “adjective” or “noun” to talk about
the grammar of the English spoken language.

15.10 Classes

You don’t have to create classes to program in Ruby. If you only write
simple programs, you won’t need classes. Classes are used to organize
your code and make your software more modular. For the software
architect, classes make it possible to create a structure for complex
software programs. To use Rails, you’ll use the classes and methods that
are defined in the Rails API.

There is one class at the apex of the Ruby class hierarchy:
BasicObject. BasicObject is a very simple class, with almost no methods of its own. The Object class
inherits from BasicObject. All classes in the Ruby and Rails APIs
inherit behavior from Object. Object provides basic methods such as
nil? and to_s (“to string”) for every class that inherits from
Object.

We create a class Example and inherit from Object with the <
“inherits from” operator:

class Example < Object
.
.
.
end

The end statement indicates all the preceding code is part of the
Example class.

In Ruby, all classes inherit from the Object class, so we don’t need to
explicitly subclass from Object as we do here. The example just
shows it for teaching purposes.

Here is the Example class without the explicit subclassing from
Object:

class Example
.
.
.
end

Much of the art of programming is knowing what classes are available in
the API and deciding when to subclass to inherit useful methods.

15.11 Methods

Classes give organization and structure to a program. Methods get the
work done.

Any class can have methods. Methods are a series of expressions that
return a result (a value). We say methods describe the class behavior.

A method definition begins with the keyword def and (predictably) ends
with end.

 def backwards_name
 @name.reverse
 end

Initializing the object and calling the method returns a result:

ex = Example.new('Daniel',nil)
my_backwards_name = ex.backwards_name
 => leinaD

We can also override a method from the parent class.

 def to_s
 @name
 end

Here we are overriding the to_s (“to string”) method from the parent
Object class.

Ordinarily, the to_s method returns the object’s class name and an
object id. Here we will return the string assigned to the variable
@name.

Most times you won’t override the to_s (“to string”) method. This
example shows how you can override any method inherited from a parent
class.

15.12 Dot Operator

The “dot” is the method operator. This tiny punctuation symbol is a
powerful operator in Ruby.

It allows us to call a method to get a result.

Sometimes we say we send a message to the object when we invoke a
method, implying the object will send a result.

Some classes, such as Date, provide class methods which can be
called directly on the class without instantiating it first. For
example, you can run this in the Rails console:

Date.today
 => Tue, 15 Oct 2013

More often, methods are called on variables which are instances of a
class. For example:

birthdate = Date.new(1990, 12, 22)
 => Sat, 22 Dec 1990
birthmonth = birthdate.month
 => 12

We can apply method chaining to objects. For example, String has
methods reverse and upcase (among many others). We could write:

nonsense = 'foobar'
 => "foobar"
reversed = nonsense.reverse
 => "raboof"
capitalized = reversed.upcase
 => "RABOOF"

It is easier to use method chaining and write:

'foobar'.reverse.upcase
 => "RABOOF"

Classes create a structure for our software programs and methods do all
the work.

15.12.1 Question and Exclamation Methods

You’ll see question marks and exclamation points (sometimes called the
“bang” character) used in method names. These characters are simply a
naming convention for Ruby methods.

The question mark indicates the method will return a boolean value
(true or false).

The bang character indicates the method is “dangerous.” In some cases it
means the method will change the object rather just return a result. In
Rails an exclamation point often means the method will throw an
exception on failure rather than failing silently.

15.13 Initialize Method

Objects are created from classes before they are used. As I suggested
earlier, class definitions are cookie cutters; the Ruby interpreter uses
them to cut cookies. When we call the new method, we press the cookie
cutter into the dough and get a new object. All the cookies will have
the same shape but they can be decorated differently, by sprinkling
attributes of different values.

The initialize method is one of the ways we sprinkle attributes on our
cookie.

 def initialize(name,date)

When we want to use an Example object and assign it to a variable, we
will instantiate it with Example.new(name,date). The new method
calls the initialize method automatically. If we don’t define an
initialize method, the new method still works, inherited from
Object, so we can always instantiate any class.

15.14 Method Parameters

Methods are useful when they operate on data.

If we want to send data to a method, we define the method and indicate
it will accept parameters. Parameters are placeholders for data
values. The values that are passed to a method are arguments. “Parameters” are empty placeholders and “arguments” are the actual
values. In practice, “parameters” and “arguments” are terms that are
used interchangeably and not many developers will notice if you mix up
the terms.

Our initialize method takes name and date arguments:

 def initialize(name,date)

Ruby is clever with method parameters. You can define a method and
specify default values for parameters. You can also pass extra arguments
to a method if you define a method that allows optional parameters. This
makes methods very flexible.

We separate our parameters with commas. For readability, we enclose our
list of parameters in parentheses. In Ruby, parentheses are always
optional but they often improve readability.

15.15 Variable

In Ruby, everything is an object. We can assign any object to a
variable. The variable works like an alias. We can use a variable
anywhere as if it were the assigned object. The variable can be assigned
a string, a numeric value, or an instance of any class (all are
objects).

 name

You can assign a new value to a variable anywhere in your method. You
can assign a different kind of object if you want. You can take away
someone’s name and give them a number. We can create a variable
player, assign it the string ’Jackie Robinson’, replace the value
with an integer 42, or even a date such as Date.new(1947,4,15).

15.15.1 Symbol

Obviously, we see many symbols when we read Ruby code, such as
punctuation marks and alphanumeric characters. But symbol has a
specific meaning in Ruby. It is like a variable, but it can only be
assigned a value once. After the initial assignment, it is immutable;
it cannot be changed.

You will recognize a symbol by the colon that is always the first
character.

 :name

Symbols are efficient and fast because the Ruby interpreter doesn’t have
to work to check their current values.

You’ll often see symbols used in Rails where you might expect a
variable.

15.16 Attributes

In an object, methods do the work and data is stored as variables. We
can use the initialize method to input data to the object. We can’t
access data in variables from outside the object unless it is exposed as
attributes.

Classes can have attributes, which we can “set” and “get.” That is, we
can establish a value for an attribute and retrieve the value by
specifying the attribute name.

Attributes are a convenient way to push data to an object and pull it
out later.

In Ruby, attributes are also called properties.

Here we use the attr_accessor directive to specify that we want to
expose honorific, name and date attributes.

 attr_accessor :honorific
 attr_accessor :name
 attr_accessor :date

If we use attr_accessor to establish attributes, we can use the
attribute names as methods. For example, we could write:

 ex = Example.new('Daniel',nil)
 my_name = ex.name

In Ruby, attributes are just specialized methods that expose data
outside the object.

15.17 Instance Variable

Inside an object, an ordinary variable only can be used within the
method in which it appears. If you use a variable with the same name in
two different methods, it will have a different value in each method. The scope of a variable is limited to the method in which it is used.

Often you want a variable to be available throughout an instance, within
any method. You can declare an instance variable by using an
@ (at) sign as the first character of the variable name.

The instance variable can be used by any method after the class is instantiated.

@name = name

The values assigned to instance variables are unique for every instance
of the class. If you create multiple instances of a class, each will
have its own values for its instance variables. Here we create two
instances of the Example class. The @name instance variable will be
“Daniel” in the first instance and “Foobar” in the second instance.

 ex1 = Example.new('Daniel',nil)
 ex2 = Example.new('Foobar',nil)

An instance variable is not visible outside the object in which it
appears; but when you create an attr_accessor, it creates an instance
variable and makes it accessible outside the object.

15.17.1 Instance Variables in Rails

In a Rails controller, you’ll often see a model assigned to an instance
variable. Earlier we saw @owner = Owner.new when we instantiated an
Owner model. We use an instance variable when we want a model to be
available to the view template.

Rails beginners learn the simple rule that you have to use the
@ (at) sign if you want a variable to be available in the view. Intermediate Rails developers learn that the variable with the @
(at) sign is called an instance variable and is only available within
the scope of the instance (practically speaking, to other methods in
the class definition). That leads to a question: Why is an instance
variable available inside a view?

There is a good reason. A Rails view is NOT a separate class. It is a
template and, under the hood, it is part of the current controller
object. From the viewpoint of a programmer, a Rails controller and a
view are separate files, segregated in separate folders. From the
viewpoint of a software architect, the controller is a single object
that evaluates the template code, so an instance variable can be used in
the view file.

This example shows us that the programmer and the software architect
have different perspectives on a Rails application. Understanding Rails
requires an integration of multiple points of view.

15.18 Double Bar Equals Operator

I’ve suggested that the best way to get help is to use Google or Stack
Overflow to look for answers. But that’s difficult when you don’t know
what symbols are called. Try googling “||=” and you’ll get no results. Instead, try googling “bar bar equals ruby” or “double pipe equals ruby”
and you’ll find many explanations of the “or equals” operator. This is
an example of mysterious shorthand code you’ll often find in Rails.

”||=” is used for conditional assignment. In this case, we only assign a
value to the variable if no value has been previously assigned.

 @honorific ||= 'Esteemed'

It is equivalent to this conditional expression:

 if not x
 x = y
 end

Conditional assignment is often used to assign a “default value” when no
other value has been assigned.

15.19 Conditional

Conditional logic is fundamental to programming. Our code is always a
path with many branches.

When the Ruby interpreter encounters an if keyword, it expects to find
an expression which evaluates as true or false (a boolean).

If the expression is true, the statements following the condition are
executed.

If the expression is false, any statements are ignored, unless there is
an else, in which case an alternative is executed.

 if date.month == 12
 .
 .
 .
 end

Sometimes you’ll see unless instead of if, which is a convenient way
of saying “execute the following if the condition is false.”

In Ruby, the conditional expression can be a simple comparison, as
illustrated above with the == (double equals) operator. Or if can be
followed by a variable that has been assigned a boolean value. Or you
can call a method that returns a boolean result.

15.20 Ternary Operator

A basic conditional structure might look like this:

 if date.nil?
 @date = Date.today
 else
 @date = date
 end

We test if date is undefined (nil). If nil, we assign today’s date to
the instance variable @date. If date is already assigned a value, we
assign it to the instance variable @date. This is useful in the
initialize(name,date) method in our example code because we want to
set today’s date as the default value for the instance variable @date
if the parameter date is nil.

Ruby developers like to keep their code tight and compact. So you’ll see
a condensed version of this conditional structure often, particularly
when a default value must be assigned.

This compact conditional syntax is named the ternary operator because
it has three components. Here is the syntax:

 condition ? value_if_true : value_if_false

Here is the ternary operator we use in our example code:

 @date = date.nil? ? Date.today : date

This is another example of Ruby syntax that you must learn to recognize
by sight because it is difficult to interpret if you have never seen it
before.

For more Ruby code that has been condensed into obscurity, see an
article on Ruby Golf. Ruby golf
is the sport of writing code that uses as few characters as possible.

15.21 Interpolation

Rubyists love to find special uses for orthography such as hashmarks and
curly braces. It seems Rubyists feel sorry for punctuation marks that
don’t get much use in the English language and like to give them new
jobs.

We already know that we can assign a string to a variable:

 name = 'Foobar Kadigan'

We can also perform “string addition” to concatenate strings. Here we
add an honorific, a space, and a name:

 @honorific = 'Mr.'
 @name = 'Foobar Kadigan'
 titled_name = @honorific + ' ' + @name
 => "Mr. Foobar Kadigan"

Single quote marks indicate a string. In the example above, we enclose a
space character within quote marks so we add a space to our string.

You can eliminate the ungainly mix of plus signs, single quote marks,
and space characters in the example above.

Use double quote marks and you can perform interpolation, which gives
a new job to the hashmark and curly brace characters:

 @honorific = 'Mr.'
 @name = 'Foobar Kadigan'
 titled_name = "#{@honorific} #{@name}"
 => "Mr. Foobar Kadigan"

The hashmark indicates any expression within the curly braces is to be
evaluated and returned as a string. This only works when you surround
the expression with double quote marks.

Interpolation is cryptic when you first encounter the syntax, but it
streamlines string concatenation.

15.22 Access Control

Any method you define will return a result.

Sometimes you want to create a method that only can be used by other
methods in the same class. This is common when you need a simple utility
method that is used by several other methods.

Any methods that follow the keyword private should only be used by
methods in the same class (or a subclass).

 private

You often see private methods in Rails. Ruby provides a protected
keyword as well, but the difference between protected and private is
subtle and protected is seldom seen in Rails applications.

15.23 Hash

Our example code includes a private method named famous_birthdays that
returns a collection of names and birthdays of famous musicians.

Computers have always been calculation machines; they are just as
important in managing collections.

One important type of collection is named a Hash. A Hash is a data
structure that associates a key to some value. You retrieve the value
based upon its key. This construct is called a dictionary, an
associative array, or a map in other languages. You use the key to
“look up” a value, as you would look up a definition for a word in a
dictionary.

You’ll recognize a Hash when you see curly braces (again, Rubyists give
a job to under-utilized punctuation marks).

 birthdays = {
 'Ludwig van Beethoven' => Date.new(1770,12,16),
 'Dave Brubeck' => Date.new(1920,12,6),
 'Buddy Holly' => Date.new(1936,9,7),
 'Keith Richards' => Date.new(1943,12,18)
 }

Rubyists also like to create novel uses for mathematical symbols. The
combination of an = (equals) sign and >
(greater than) sign is called a hashrocket. The =>
(hashrocket) operator associates a key and value pair in a Hash. You’ll often see
hashrockets in code written before Ruby 1.9. Ruby 1.9
introduced a new syntax using colons instead of hashrockets.

Whether with colons or hashrockets, you’ll often see Hashes used in
Rails.

With Ruby 1.9 and later, here’s how we associate key and value pairs in a
Hash:

 birthdays = {
 beethoven: Date.new(1770,12,16),
 brubeck: Date.new(1920,12,6),
 holly: Date.new(1936,9,7),
 richards: Date.new(1943,12,18)
 }

Here, instead of using a string as the key, we are using Ruby symbols,
which enable faster processing. The : (colon) character associates the
key and value.

Ordinarily, a symbol is defined with a leading colon character. In a
Hash, a trailing colon makes a string into a symbol.

If you want to transform a string containing spaces into a symbol in a
Hash, you can do it, though the syntax is awkward:

 birthdays = {
 'Ludwig van Beethoven': Date.new(1770,12,16)
 }

15.24 Array

An Array is a list. Arrays can hold objects of any data type. In fact,
arrays can contain a mix of different objects. For example, an array can
contain a string and another array (this is an example of a nested
array).

An array can be instantiated with square brackets:

 born_in_december = []

We can populate the array with values when we create it:

 my_list = ['apples', 'oranges']

If we don’t want to use quote marks and commas to separate strings in a
list, we can use the %w syntax:

 my_list = %w(apples oranges)

We can add new elements to an array with a push method:

 my_list = Array.new
 => []
 my_list.push 'apples'
 => ["apples"]
 my_list.push 'oranges'
 => ["apples", "oranges"]

In our example code, we use the << shovel operator to add items to
the array:

 born_in_december << name

A Ruby array has close to a hundred available methods, including
operations such as size and sort. See the Ruby
API for a full list.

15.25 Iterator

Of all the methods available for a Ruby collection such as Hash or
Array, the iterator may be the most useful.

You’ll recognize an iterator when you see the each method applied to a
Hash or Array:

 famous_birthdays.each

The each keyword is always followed by a block of code. Each item in
an Array, or key-value pair in a Hash, is passed to the block of code to
be processed.

15.26 Block

You can recognize a block in Ruby when you see a do ... end
structure. A block is a common way to process each item when an iterator
such as each is applied to a Hash or Array.

In our example, we iterate over the famous_birthdays hash:

 famous_birthdays.each do |name, date|
 .
 .
 .
 end

Within the two pipes (or bars), we assign the key and value to two
variables.

The block is like an unnamed method. The two variables are available
only within the block. As each key-value pair is presented by the
iterator, the variables are assigned, and the statements in the block
are executed.

In our example code, we evaluate each date in the famous_birthdays
hash to determine if the musician was born in December. When we find a
December birthday, we add the name of the musician to the
born_in_december array:

 famous_birthdays.each do |name, date|
 if date.month == 12
 born_in_december << name
 end
 end

When you use a block within a method, any variable in your method is
available within the block. That’s why we can add name to the array
born_in_december.

Computer scientists consider a block to be a programming language
construct called a closure. Ruby has other closures, including the
proc (short for procedure) and the lambda. Though blocks are common
you’ll seldom see procs or lambdas in ordinary Rails code. They are more
common in the Rails source code where advanced programming techniques
are used more frequently.

The key point to know about a block (or a proc or a lambda) is that it
works like a method. Though you don’t see a method definition, you can
use a block to evaluate a sequence of statements and obtain a result.

15.27 Rails and More Keywords

We’ve looked at only a few of the keywords and constructs you will see
in Ruby code. The exercise has improved your Ruby literacy, so you’ll
have an easier time reading Ruby code.

Nothing in the exercise is Rails. The example code only uses keywords
from the Ruby API.

Rails has its own API, with hundreds of classes and methods. The Rails
API uses the syntax and keywords of the Ruby language to construct new
classes and create new keywords that are specific to Rails and useful
for building web applications.

We say Ruby is a general-purpose language because it can be used for
anything. Rails is a domain-specific language (DSL) because it is used
only by people building web applications (in this sense, “domain” means
area or field of activity). Ruby is a great language to use for building
a DSL, which is why it was used for Rails. Unlike some other programming
languages, Ruby easily can be extended or tweaked. For example,
developers can redefine classes, add extra methods to existing classes,
and use the special method_missing method to handle method calls that
aren’t previously defined. Software architects call this
metaprogramming which simply means clever programming that twists and
reworks the programming language.

When you add a gem to a Rails project, you’ll add additional keywords. Some of the most powerful gems add their own DSLs to your project. For
example, the Cucumber gem provides a DSL for turning user stories into
automated tests.

Adding Rails, additional gems, and DSLs provides powerful functionality
at the cost of complexity. But it all conforms to the syntax of the Ruby
language. As you learn to recognize Ruby keywords and language
structures, you’ll be able to pick apart the complexity and make sense
of any code.

15.28 More Ruby

To develop your proficiency as a Rails developer, I hope you will make
an effort to learn Ruby as you learn Rails. Don’t be lazy; when you
encounter a bit of Ruby you don’t understand, make an effort to find out
what is going on. Spend time with a Ruby textbook or interactive course
when you work on Rails projects.

15.28.1 Collaborative Learning

The best way to learn Ruby is to actually use it. That’s the concept
behind this site:

	Exercism.io

With Exercism, you’ll work though code exercises and get feedback from
other learners.

15.28.2 Online Tutorials

	TryRuby.org - free browser-based interactive tutorial from Code School

	Codecademy Ruby Track - free browser-based interactive tutorials from Codecademy

	Ruby Koans - free browser-based interactive exercises from Jim Weirich and Joe O’Brien

	Ruby in 100 Minutes - free tutorial from JumpstartLab

	Code Like This - free tutorials by Alex Chaffee

	RailsBridge Ruby - basic introduction to Ruby

	CodeSchool Ruby Track - instructional videos with in-browser coding exercises

15.28.3 Books

	Learn To Program - free ebook by Chris Pine

	Learn To Program - expanded $18.50 ebook by Chris Pine

	Learn Code the Hard Way - free from Zed Shaw and Rob Sobers

	Beginning Ruby - by Peter Cooper

	Programming Ruby - by Dave Thomas, Andy Hunt, and Chad Fowler

	Eloquent Ruby - by Russ Olsen

	Books by Avdi Grimm, including Confident Ruby and Objects on Rails.

15.28.4 Newsletters

	Practicing Ruby - $8/month for access to over 90 helpful articles on Ruby

	RubySteps - weekly lessons by email from Pat Maddox

15.28.5 Screencasts

	RubyTapas - $9/month for access to over 100 screencasts on Ruby

15.29 Git

There’s no need to save the file lib/example.rb file we created to
learn Ruby.

You can simply delete the file:

$ rm lib/example.rb

Check the Git status to make sure the file is gone:

$ git status
On branch master
nothing to commit, working directory clean

We’ve cleaned up after our Ruby exercise.

From here on, we’re done with silly code examples. No more fooling
around. With the next chapter, we start building a real-world Rails
website.

 Chapter 16 Layout and Views

In previous chapters we created a dynamic home page and learned
techniques for troubleshooting.

In this chapter we’ll look closely at view files, particularly the
application layout, so we can organize the design of our web pages. We’ll also learn how to add a CSS stylesheet to improve the graphic
design of our web pages.

This chapter covers a lot of ground, so take a break before jumping in,
or pace yourself to absorb it all.

16.1 Template Languages

HTML is intended for markup, which means applying formatting to a text
file. For a web application, ordinary HTML is not sufficient; we need to
mix in Ruby code. We’ll use a templating language that gives us a
syntax for mixing HTML tags and Ruby code. The Ruby code will be
processed by a templating engine built into Rails. The output will be
pure HTML sent to the browser.

The most popular templating language available for Rails is ERB,
Embedded Ruby, which is the Rails default.

In the “Concepts” chapter in Book One, you learned that components of Rails can be
mixed for different “stacks.” Some developers substitute
Haml or Slim for ERB.
We’ll use ERB in this book because it is the most popular.

16.2 Introducing the Application Layout

We’ve already created the view file for our home page.

The file app/views/visitors/new.html.erb looks like this:

<h3>Home</h3>
<p>Welcome to the home of <%= @owner.name %>.</p>
<p>I was born on <%= @owner.birthdate %>.</p>
<p>Only <%= @owner.countdown %> days until my birthday!</p>

The first line in the file contains an HTML heading tag, <h3>, with
headline text, “Home.”

When you used the browser Developer Tools view to see the HTML file received
by the server, you saw this:

<!DOCTYPE html>
<html>
<head>
<title>LearnRails</title>
<meta name="csrf-param" content="authenticity_token" />
<meta name="csrf-token" content="..." />
<link rel="stylesheet" media="all" href="/assets/application.css?body=1" data-turbolinks-track="reload" />
<script src="/assets/jquery.js?body=1" data-turbolinks-track="reload"></script>
<script src="/assets/jquery_ujs.js?body=1" data-turbolinks-track="reload"></script>
<script src="/assets/turbolinks.js?body=1" data-turbolinks-track="reload"></script>
<script src="/assets/action_cable.js?body=1" data-turbolinks-track="reload"></script>
<script src="/assets/cable.js?body=1" data-turbolinks-track="reload"></script>
<script src="/assets/application.js?body=1" data-turbolinks-track="reload"></script>
</head>
<body>

<h3>Home</h3>
<p>Welcome to the home of Foobar Kadigan.</p>
<p>I was born on 1990-09-22.</p>
<p>Only 126 days until my birthday!</p>

</body>
</html>

If you’ve built websites before, you’ll recognize the HTML file conforms
to the HTML5 specification, with a DOCTYPE, <head> and <body>
tags, and miscellaneous tags in the HEAD section, including a title and
various CSS and JavaScript assets.

If you look closely, you’ll see some HTML attributes you might not
recognize, for example the data-turbolinks-track attribute. That is
added by Rails to support
turbolinks, for faster loading of
webpages.

For the most part, everything is ordinary HTML. But only part of it
originates from the view file we’ve created for our home page.

16.3 Where did all the extra HTML come from?

The final HTML file is more than twice the size of the view file.

The additional tags come from the default application layout file.

Rails has combined the Visitors#New view with the default application
layout file. To be precise, the new method in the Visitors controller
creates the home page by combining two files:

	the application layout file app/views/layouts/application.html.erb

	the Visitors#New template in the file app/views/visitors/new.html.erb

We say Rails “renders” (or “delivers”) a new view by combining two files.

Let’s examine the application layout file.

Open the file app/views/layouts/application.html.erb:

<!DOCTYPE html>
<html>
 <head>
 <title>LearnRails</title>
 <%= csrf_meta_tags %>

 <%= stylesheet_link_tag 'application', media: 'all',
 'data-turbolinks-track': 'reload' %>
 <%= javascript_include_tag 'application',
 'data-turbolinks-track': 'reload' %>
 </head>

 <body>
 <%= yield %>
 </body>
</html>

Static pages delivered from the public folder do not use the default
application layout. But every page generated by the
model-view-controller architecture in the app/ folder incorporates
the default application layout, unless you specify otherwise.

The default application layout is where you put HTML that you want to
include on every page of your website.

Remember when we looked at the hidden code in the controller that
renders a view? The controller uses the render method to combine the
view file with the application layout.

Here’s the Visitors controller, again, with the hidden render method revealed:

class VisitorsController < ApplicationController

 def new
 @owner = Owner.new
 render 'visitors/new'
 end

end

The render method combines the app/views/visitors/new.html.erb
view file with the app/views/layouts/application.html.erb
application layout.

Alternatively, you could tell the controller to render the view without
any application layout:

 render 'visitors/new', :layout => false

Or you could specify an alternative layout file, for example
app/views/layouts/special.html.erb:

 render 'visitors/new', :layout => 'special'

An alternative layout can be useful for special categories of pages,
such as administrative pages or landing pages.

We won’t use alternative layouts in this tutorial application, but it’s
good to know they are an option. The reference RailsGuides: Layouts and
Rendering in
Rails
explains more about using alternative layouts.

16.4 Yield

How does the render method insert the view file in the application
layout? How do the two files get combined?

Notice that the default application layout contains the Ruby keyword
yield.

.
.
.
<%= yield %>
.
.
.

The yield keyword is replaced with a view file that is specific to the
controller and action, in this case, the
app/views/visitors/new.html.erb view file.

The content from the view is inserted where you place the yield
keyword. The yield keyword pulls in another view file.

16.5 Yield Variations

We won’t do it, but you could also use the yield keyword to insert a
sidebar or a footer.

Rails provides ways to insert content into a layout file at different
places. The content_for method is helpful when your layout contains
distinct regions such as sidebars and footers that should contain their
own blocks of content.

For example, you could create an application layout that includes a
sidebar. This is just an example, so don’t add it to the application you
are building:

<!DOCTYPE html>
<html>
<head>
 <title>LearnRails</title>
 <%= csrf_meta_tags %>
 <%= stylesheet_link_tag 'application', media: 'all',
 'data-turbolinks-track': 'reload' %>
 <%= javascript_include_tag 'application',
 'data-turbolinks-track': 'reload' %>
</head>
<body>
 <div class="main">
 <%= yield %>
 </div>
 <div class="sidebar">
 <%= yield :sidebar %>
 </div>
</body>
</html>

This view file provides both the main content and a sidebar:

<% content_for :sidebar do %>
 <h3>Contact Info</h3>
 <p>Email: me@example.com</p>
<% end %>
<h3>Main</h3>
<p>Welcome!</p>

This section gets inserted at the <%= yield :sidebar %> location:

<% content_for :sidebar do %>
 <h3>Contact Info</h3>
 <p>Email: me@example.com</p>
<% end %>
.
.
.

The rest of the file gets inserted at the main <%= yield %> location.

Again, don’t add this to your application. I’m just offering it as an
example of multiple yield statements.

The reference RailsGuides: Layouts and Rendering in
Rails
explains more about using yield and content_for.

16.6 ERB Delimiters

Earlier, we saw ERB <%= ... %> delimiters allow us to insert Ruby
expressions which are replaced by the result of evaluating the code. Here is an example that displays the number 4

<%= 2 + 2 %>

Look closely and you’ll see this ERB delimiter is slightly different:

<% 3.times do %>
 list item
<% end %>

An ERB delimiter that does not contain the = (equals) sign
will execute Ruby code but will not display the result. It is commonly
used to add Ruby blocks to HTML code, so you’ll often see do and end
statements within ERB <% ... %> delimiters. The example above will
create three list items, like this:

list item
list item
list item

A third version of the ERB delimiter syntax is rarely seen:

<%# this is a comment %>

It is only used for adding comments. The expression within the ERB
<%# ... %> delimiters will not execute and will not appear when the
page is output as HTML.

16.7 Introducing View Helpers

We can use ERB delimiters to create Rails view helpers.

We’ve seen how ERB delimiters can enclose Ruby code.

In the application layout file, the <%= ... %> delimiters don’t
include anything that looks like Ruby code. For example, we see
<%= csrf_meta_tags %> which seems to be neither HTML nor anything from
the Ruby API. In fact, this expression is Ruby code, but it is from the
Rails API and only found in Rails applications.

Ruby is an ideal choice for a web application development platform such
as Rails because it can easily be used to create a domain-specific
language (or DSL). Much of Rails is a domain-specific
language. The Smalltalk programming language was famous for its slogan
“Code should read like a conversation.” Ruby, which borrows much from
Smalltalk, makes it easy to add new words to the conversation. We can
add new keywords that produce complex behaviour, creating entire new
APIs such as Rails. Ruby makes it easy for the Rails core team to add
keywords such as csrf_meta_tags that are additions to the Ruby
language.

In this case, Ruby’s ability to produce a domain-specific language gives
us Rails view helpers.

Think of Rails view helpers as “macros to generate HTML.” You may have
used macros to automate a series of commands in World of Warcraft or
other games. If you’re an office worker, you may have used macros in
Microsoft Word or Excel. A Rails view helper is a keyword that expands
into a longer string of HTML tags and content.

In this case, the csrf_meta_tags view helper expands into two lines of
HTML:

<meta name="csrf-param" content="authenticity_token" />
<meta name="csrf-token" content="bhd8ZZJ7dsMza8ZT1Csm5IuCIxkNNq==" />

Why do we need this cryptic code? It turns out that almost any website
that accepts user input via a form is vulnerable to a security bug (an
exploit) named a cross-site request
forgery. To
prevent rampant CSRF exploits, the Rails core team includes the
csrf_meta_tags view helper in the default application layout. Rails
provides a number of similar features that make websites more secure.

A Rails view file becomes much less mysterious when you realize that
many of the keywords you see are view helpers. Strange new keywords may
be part of the Rails API. Or they may be provided by gems you’ve added
(gem developers often use the Ruby DSL capability to create new
keywords). Think of it this way: Ruby gives developers the power to
create an unlimited number of new “HTML tags.” These tags are not really
HTML because they are not part of the HTML specification. But they serve
as shortcuts to produce complex snippets of HTML and content.

Now that we’ve learned about view helpers, we can start building our
default application layout.

16.8 The Rails Layout Gem

Every Rails application needs a well-designed application layout. The
Rails default starter application, which we get when we run rails new,
provides a barebones application layout. It is purposefully simple so
developers can add the code they need to accommodate any front-end
framework (we’ll look closely at front-end frameworks in the next
chapter).

In this chapter we’ll start with a simple application layout file,
adding a little CSS for simple styling. In the next chapter, we’ll
upgrade the application layout file to use the Bootstrap front-end
framework.

To make it easy, we’ll use the
rails_layout gem to
generate files for an application layout. In this chapter, we’ll use the
rails_layout gem to create our basic layout and CSS files. In the next
chapter, we’ll use the rails_layout gem to create layout files for Bootstrap.

In your Gemfile, you’ve already added:

gem 'rails_layout'

and previously run $ bundle install.

Rails provides the rails generate command to run simple scripts that
are packaged into gems.

The rails_layout gem uses the rails generate command to set up files
we need. Run:

$ rails generate layout:install simple --force

The –force argument will force the gem to replace the existing
app/views/layouts/application.html.erb file.

If you have the app/views/layouts/application.html.erb file open in
your text editor, it will change.

The rails_layout gem will rename the file:

	app/assets/stylesheets/application.css

to:

	app/assets/stylesheets/application.css.scss

The gem will add (or modify) five files:

	app/views/layouts/application.html.erb

	app/assets/stylesheets/simple.css

	app/views/layouts/_messages.html.erb

	app/views/layouts/_navigation.html.erb

	app/views/layouts/_navigation_links.html.erb

Examining these files closely will reveal a great deal about the power
of Rails. We’ll dedicate the rest of this chapter to exploring the
contents of these files.

16.9 Basic Boilerplate

Open the file app/views/layouts/application.html.erb:

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title><%= content_for?(:title) ? yield(:title) : "Learn Rails" %></title>
 <meta name="description" content=
 "<%= content_for?(:description) ? yield(:description) : "Learn Rails" %>">
 <%= stylesheet_link_tag 'application', media: 'all',
 'data-turbolinks-track' => 'reload' %>
 <%= javascript_include_tag 'application', 'data-turbolinks-track' => 'reload' %>
 <%= csrf_meta_tags %>
 </head>
 <body>
 <header>
 <%= render 'layouts/navigation' %>
 </header>
 <main role="main">
 <%= render 'layouts/messages' %>
 <%= yield %>
 </main>
 </body>
</html>

Some of this code is already familiar.

You’ll recognize the standard HTML DOCTYPE, <head>, and <body>
tags.

We’ve already discussed the yield keyword.

We’ve seen the <%= ... %> delimiters surrounding the csrf_meta_tags
view helper:

	csrf_meta_tags - generates <meta> tags that prevent cross-site
request forgery

The rest of the file may be unfamiliar. We’ll examine it line by line.

16.10 Adding Boilerplate

Webmasters who build static websites are accustomed to setting up web
pages with “boilerplate,” or basic templates for a standard web page. The well-known HTML5 Boilerplate project
has been recommending “best practice” tweaks to web pages since 2010. Very few of the HTML5 Boilerplate recommendations are relevant for Rails
developers, as Rails already provides almost everything required. We’ll
discuss one important boilerplate item and a few “nice to have” extras.

If you want to learn more, the article HTML5 Boilerplate for Rails
Developers
looks at the recommendations.

16.10.1 Viewport

The viewport metatag improves the presentation of web pages on mobile
devices. Setting a viewport tells the browser how content should fit on
the device’s screen. The tag is required for either Bootstrap or Zurb
Foundation front-end frameworks.

The viewport metatag looks like this:

<meta name="viewport" content="width=device-width, initial-scale=1.0">

Apple’s developer documentation on Configuring the
Viewport
provides details.

16.10.2 Title and Description

If you want to maximize traffic to your website, you should make your
web pages search-engine friendly. That means adding title and
description metatags. Google uses contents of the title tag to display
titles in search results. And it will sometimes use the content of a
description metatag in search results snippets. See Google’s explanation
of how it uses Site Title and
Description. Good titles and descriptions improve clickthrough from Google searches.

Title and description looks like this:

<title><%= content_for?(:title) ? yield(:title) : "Learn Rails" %></title>
<meta name="description" content="<%= content_for?(:description) ?
 yield(:description) : "Learn Rails" %>">

The rails_layout gem has created a default title and description based
on our project name.

Later in the tutorial, we’ll see how to use a content_for statement to
set a title and description for each individual page.

The code is complex if you haven’t seen advanced Ruby before. It uses
the Ruby ternary
operator
which maximizes compactness at the price of introducing obscurity. You’ll recall from the “Just Enough Ruby” chapter that it is a fancy
conditional statement that says, “if content_for?(:title) is present
in the view file, use yield(:title) to include it, otherwise just
display ‘Learn Rails’.”

16.11 Asset Pipeline

You may have noticed these Rails helper methods:

	stylesheet_link_tag

	javascript_include_tag

These are tags that add CSS and JavaScript to the web page using the
Rails asset pipeline.

The Rails asset pipeline utility is one of the most powerful features
of the platform. It offers convenience to the developer and helps
organize an application; more importantly, it improves the speed and
responsiveness of any complex website. If you’re going to do any
front-end development with CSS or JavaScript in Rails, you must
understand the Rails asset pipeline. Here’s how it works.

16.11.1 Assets Without Rails

When building non-Rails websites, webmasters add JavaScript to a page
using the <script> tag. For every JavaScript file, they add an
additional <script> tag, so a page HEAD section looks like this:

<!DOCTYPE html>
<html>
<head>
 <title>Page that uses multiple JavaScript files</title>
 <script src="jquery.js" type="text/javascript"></script>
 <script src="jquery.plugin.js" type="text/javascript"></script>
 <script src="custom.js" type="text/javascript"></script>
</head>

The same is true for CSS files in non-Rails websites. You add a <link>
tag for each stylesheet file. With multiple stylesheets, the HEAD
section of your application layout might look like this:

<!DOCTYPE html>
<html>
<head>
 <title>Page that uses multiple CSS files</title>
 <link href="core.css" rel="stylesheet" type="text/css" />
 <link href="site.css" rel="stylesheet" type="text/css" />
 <link href="custom.css" rel="stylesheet" type="text/css" />
</head>

If you want to handle CSS and JavaScript without Rails, you can place
your files in the public folder. If you do so, every time you add a
JavaScript or CSS file, you must modify the application layout file. Instead, use the asset pipeline and simplify this.

16.11.2 Assets With Rails

The asset pipeline consists of two folders:

	app/assets/javascripts/

	app/assets/stylesheets/

Any JavaScript and CSS file you add to these folders is automatically
added to every page.

In development, when the web browser makes a page request, the files in
the asset pipeline folders are combined together and concatenated as
single large files, one for JavaScript and one for CSS.

If you examine the application layout file, you’ll see the tags that
perform this service:

<%= stylesheet_link_tag 'application', media: 'all',
 'data-turbolinks-track' => 'reload' %>
<%= javascript_include_tag 'application', 'data-turbolinks-track' => 'reload' %>

The HTML delivered to the browser looks like this:

<link href="/assets/application.css" media="all" rel="stylesheet" type="text/css" />
<script src="/assets/application.js" type="text/javascript"></script>

Using the asset pipeline, there is no need to modify the application
layout file each time you create a new JavaScript or CSS file. Create as
many files as you need to organize your JavaScript or CSS code and, in
production, you’ll automatically get one single file delivered to the
browser. In development mode, Rails continues to deliver multiple files
for easier debugging.

In production, there’s a big performance advantage with the asset
pipeline. Requesting files from the server is a time-consuming operation
for a web browser, so every extra file request slows down the browser. The Rails asset pipeline eliminates the performance penalty of multiple
<script> or <link> tags. The Rails asset pipeline also compresses
JavaScript and CSS files for faster page loads.

The asset pipeline is an example of a Rails convention that helps
developers build complex websites. It is not needed for a simple website
that uses a few JavaScript or CSS files. But it is beneficial on bigger
projects.

The asset pipeline has limitations, especially for projects with complex
front-end JavaScript. Rails developers who integrate JavaScript front-end
frameworks such as React or Angular often choose not to use the asset pipeline. Instead they rely on JavaScript tooling such as Webpack
to manage complex JavaScript assets.

Now that you understand the purpose of the Rails asset pipeline, let’s
look at more of the code in the default application layout file.

16.12 Navigation Links

Every website needs navigation links.

You can add navigation links directly to your application layout but
many Rails developers prefer to create a partial template
––a “partial”––to better organize the default application layout.

16.12.1 Introducing Partials

A partial is similar to any view file, except the filename begins with
an underscore character. Place the file in any view folder and you can
use the render keyword to insert the partial.

We’re not going to add a footer to our tutorial application, but here is
how we could do it. We’d use the render keyword with a file named
app/views/layouts/_footer.html.erb:

<%= render 'layouts/footer' %>

Notice that you specify the folder within the app/views/ directory
with a truncated version of the filename. The render method doesn’t
want the _ underscore character or the .html.erb file extension. That can be confusing; it makes sense when you remember that Rails likes
“convention over configuration” and economizes on extra characters when
possible.

We’re not going to add a footer to our application, but we will add
navigation links by using a partial. First, let’s learn about link
helpers.

16.12.2 Introducing Link Helpers

There’s no rule against using raw HTML in our view files, so we could
create a partial for navigation links that uses the HTML <a> anchor
tag like this:

<ul class="nav">
 Home
 About
 Contact

Rails gives us another option, however. We can use the Rails link_to
view helper instead of the HTML <a> anchor tag. The Rails link_to
helper eliminates the crufty <> angle brackets and the unnecessary
href="". More importantly, it adds a layer of abstraction, using the
routing configuration file to form links. This is advantageous if we
make changes to the location of the link destinations. Earlier, when we
created a static “About” page, we first set the config/routes.rb
file with a route to the “About” page:
root to: redirect(’/about.html’). Later we removed the static “About”
page and set the config/routes.rb file with a route to the dynamic
home page: root to: ’visitors#new’. If we used the raw HTML <a>
anchor tag, we’d have to change the raw HTML everywhere we had a link to
the home page. Using the Rails link_to helper, we name a route and
make any changes once, in the config/routes.rb file.

When you use the Rails link_to helper, you’ll avoid the problem of
link maintenance that webmasters face on static websites. Some
webmasters like to use absolute URLs, specifying a host name in the
link, for example http://www.example.com/about.html. Absolute URLs are
a headache when moving the site, for example from staging.example.com
to www.example.com. The problem is avoided by using relative URLs,
such as /about.html, about.html, or even ../about.html. But
relative URLs are fragile, and moving files or directories often results
in overlooked and broken links. Instead, with the Rails link_to
helper, you always get the destination location specified in the
config/routes.rb file.

16.12.3 Navigation Partial

Examine the app/views/layouts/application.html.erb and you’ll see
the use of the navigation partial.

We include the navigation partial in our application layout with the
expression:

.
.
.
<%= render 'layouts/navigation' %>
.
.
.

Open the file app/views/layouts/_navigation.html.erb:

<ul class="nav">
 <%= link_to 'Home', root_path %>
 <%= render 'layouts/navigation_links' %>

You’ll see the link_to helper.

Here the link_to helper takes two parameters. The first parameter is
the string displayed as the anchor text (’Home’). The second parameter
is the route. In this case, the route root_path has been set in the
config/routes.rb file.

The navigation partial includes another partial, which we’ll call the
navigation links partial:

.
.
.
 <%= render 'layouts/navigation_links' %>
.
.
.

This demonstrates that one partial can include another partial, so that
partials can be “nested.”

16.12.4 Navigation Links Partial

In our simple application, there’s no obvious reason to nest another
partial. But we’ll see in the next chapter that it is convenient,
because we can isolate the complex markup required by Bootstrap
from the simple list of links we need for navigation.

Open the file app/views/layouts/_navigation_links.html.erb:

<%# add navigation links to this file %>

As we add pages to our application, we’ll add links to this file.

For now, we have nothing to add.

16.13 Flash Messages

Rails provides a standard convention to display alerts (including error
messages) and other notices (including success messages), called a
flash message. The name comes from the term “flash memory” and
should not be confused with the “Adobe Flash” web development platform
that was once popular for animated websites. The flash message is
documented in the RailsGuides: Action Controller
Overview.

Here’s a flash message you might see after logging in to an application:

[image: images/figures/learn-rails-44-flash]
Figure 16.1: Flash message in Rails.

It is called a “flash message” because it appears on a page temporarily. When the page is reloaded or another page is visited, the message
disappears.

Typically, you will see only one flash message on a page. But there is
no limit to the number of flash messages that can appear on a page.

16.13.1 Creating Flash Messages

Flash messages are created in a controller. For example, we can add
messages to the home page by modifying the file
app/controllers/visitors_controller.rb like this:

class VisitorsController < ApplicationController

 def new
 @owner = Owner.new
 flash[:notice] = 'Welcome!'
 flash[:alert] = 'My birthday is soon.'
 end

end

If you test the application after adding the messages to the
VisitorsController, you’ll see two flash messages appear on the page.

Rails provides the flash object so that messages can be created in the
controller and displayed on the rendered web page.

In this example, we create a flash message by associating the object
flash[:notice] with the string ’Welcome!’. We can assign other
messages, such as flash[:alert] or even flash[:warning]. In
practice, Rails uses only :notice and :alert as flash message keys
so it is wise to stick with just these.

16.13.2 Flash and Flash Now

You can control the persistence of the flash message by choosing from
two variants of the flash directive.

Use flash.now in the controller when you immediately render a page,
for example with a render :new directive. With flash.now, the
message will vanish after the user clicks any links.

Use the simple variant, flash, in the controller when you redirect to
another page, for example with a redirect_to root_path directive. If
you use flash.now before a redirect, the user will not see the flash
message because flash.now does not persist through redirects or links. If you use the simple flash directive before a render directive, the
message will appear on the rendered page and reappear on a subsequent
page after the user clicks a link.

In our example above, we really need to use the flash.now variant
because the controller provides a hidden render method. Update the
file app/controllers/visitors_controller.rb:

class VisitorsController < ApplicationController

 def new
 @owner = Owner.new
 flash.now[:notice] = 'Welcome!'
 flash.now[:alert] = 'My birthday is soon.'
 end

end

Using flash.now will make sure the message only appears on the
rendered page and will not persist after a user follows a link to a new
page.

If you ever see a “sticky” flash message that won’t go away, you need to
use flash.now instead of flash.

16.13.3 Explaining the Ruby Code

If you’re new to programming in Ruby, it may be helpful to learn how the
flash object works.

The flash object is a Ruby hash.

You’ll recall from the “Just Enough Ruby” chapter that a hash is a data
structure that associates a key to some value. You retrieve the value
based upon its key. This construct is called a dictionary in other
languages, which is appropriate because you use the key to “look up” a
value, as you would look up a definition for a word in a dictionary.

Hash is a type of collection. Presumably, the Rails core contributors
who implemented the code chose to use a collection so that a page could
be given multiple flash messages. Because we have a collection with
(possibly) multiple messages, we need to retrieve each message one at a
time.

We learned earlier that all collections support an iterator method
named each. Iterators return all the elements of a collection, one
after the other. The iterator returns each key-value pair, item by item,
to a block. In Ruby, a block is delimited by do and end or { }
braces. You can add any code to a block to process each item from the
collection.

Here is simple Ruby code to iterate through a flash object, outputting
each flash message in an HTML div tag and applying a CSS class for
styling:

flash.each do |key, value|
 puts '' + value + ''
end

In this simple example, we use each to iterate through the flash hash,
retrieving a key and value that are passed to a block to be output
as a string. We’ve chosen the variable names key and value but the
names are arbitrary. In the next example, we’ll use name and msg as
variables for the key-value pair. The output string will appear as HTML
like this:

<div class="notice">Welcome!</div>
<div class="alert">My birthday is soon.</div>

Let’s continue examining our layout files.

16.13.4 The Flash Messages Partial

Flash messages are a very useful feature for a dynamic website.

Code to display flash messages can go directly in your application
layout file or you can use a partial.

Examine the file app/views/layouts/_messages.html.erb:

<% flash.each do |name, msg| %>
 <% if msg.is_a?(String) %>
 <%= content_tag :div, msg, :class => "flash_#{name}" %>
 <% end %>
<% end %>

It improves on our simple Ruby example in several ways. First, the
expression if msg.is_a?(String) serves as a test to make sure we only
display messages that are strings. Second, we use the Rails
content_tag view helper to create the HTML div. The content_tag
helper eliminates the messy soup of angle brackets and quote marks we
used to create the HTML output in the example above. Finally, we apply a
CSS class and combine the word “flash” with “notice” or “alert” to
make the CSS class.

We include the flash messages partial in our application layout with the
expression:

.
.
.
<%= render 'layouts/messages' %>
.
.
.

16.14 HTML5 Elements

Let’s look again at the app/views/layouts/application.html.erb file.

To complete our examination of the application layout file, we’ll look
at a few structural elements. These elements are not unique to a Rails
application and will be familiar to anyone who has done front-end
development.

Notice the tags that are structural elements in the HTML5 specification:

	<header>

	<main>

These elements add structure to a web page. The tags don’t add any new
behavior but make it easier to determine the structure of the page and
apply CSS styles.

We wrap the navigation partial in the <header> tag:

<header>
 <%= render 'layouts/navigation' %>
</header>

The <header> tag is typically used for branding or navigation.

Notice the main tag:

<main role="main">
 <%= render 'layouts/messages' %>
 <%= yield %>
</main>

We wrap our messages partial and yield expression in a
<main role="main"> element. The <main> tag is among the newest HTML5
elements (see the W3C
specification
for details). From the specification: “The main content area of a
document includes content that is unique to that document and excludes
content that is repeated across a set of documents such as site
navigation links, copyright information, site logos.” We follow the
advice of the specification and wrap our unique content in the <main>
tag.

The specification recommends, “Authors are advised to use ARIA
role=’main’ attribute on the main element until user agents implement
the required role mapping.” ARIA,
the Accessible Rich Internet Applications Suite, is a specification to
make web applications more accessible to people with disabilities. That
means the role="main" attribute is there for any web browsers that
don’t yet recognize the <main> tag, and may help people with
disabilities.

We could add a <footer> tag. It typically contains links to copyright
information, legal disclaimers, or contact information. We don’t have a
footer in our tutorial application but you can add the <footer> tag,
with additional content, if you want.

16.15 Application Layout

Our application layout is complete. We don’t have to add anything
because the rails_layout gem has created everything we need.

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title><%= content_for?(:title) ? yield(:title) : "Learn Rails" %></title>
 <meta name="description" content=
 "<%= content_for?(:description) ? yield(:description) : "Learn Rails" %>">
 <%= stylesheet_link_tag 'application', media: 'all',
 'data-turbolinks-track' => 'reload' %>
 <%= javascript_include_tag 'application', 'data-turbolinks-track' => 'reload' %>
 <%= csrf_meta_tags %>
 </head>
 <body>
 <header>
 <%= render 'layouts/navigation' %>
 </header>
 <main role="main">
 <%= render 'layouts/messages' %>
 <%= yield %>
 </main>
 </body>
</html>

We have the viewport metatag, a title, and a description.

We have partials for navigation links and flash messages.

Finally we have HTML5 structural elements.

That’s all we need for now. In the next chapter, we’ll revise it to
support styling with Bootstrap.

16.16 Simple CSS

So far, we’ve examined four files that were added by the rails_layout
gem:

	app/views/layouts/application.html.erb

	app/views/layouts/_messages.html.erb

	app/views/layouts/_navigation.html.erb

	app/views/layouts/_navigation_links.html.erb

Let’s examine the CSS file that was created by the rails_layout gem.

Open the file app/assets/stylesheets/simple.css:

/*
 * Simple CSS stylesheet for a navigation bar and flash messages.
 */
main {
 background-color: #eee;
 padding-bottom: 80px;
 width: 100%;
 }
header {
 border: 1px solid #d4d4d4;
 background-image: linear-gradient(to bottom, white, #f2f2f2);
 background-color: #f9f9f9;
 -webkit-box-shadow: 0 1px 10px rgba(0, 0, 0, 0.1);
 -moz-box-shadow: 0 1px 10px rgba(0, 0, 0, 0.1);
 box-shadow: 0 1px 10px rgba(0, 0, 0, 0.1);
 margin-bottom: 20px;
 font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
}
ul.nav li {
 display: inline;
}
ul.nav li a {
 padding: 10px 15px 10px;
 color: #777777;
 text-decoration: none;
 text-shadow: 0 1px 0 white;
}
.flash_notice, .flash_alert {
 padding: 8px 35px 8px 14px;
 margin-bottom: 20px;
 text-shadow: 0 1px 0 rgba(255, 255, 255, 0.5);
 border: 1px solid #fbeed5;
 -webkit-border-radius: 4px;
 -moz-border-radius: 4px;
 border-radius: 4px;
 font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
 font-size: 14px;
 line-height: 20px;
}
.flash_notice {
 background-color: #dff0d8;
 border-color: #d6e9c6;
 color: #468847;
}
.flash_alert {
 background-color: #f2dede;
 border-color: #eed3d7;
 color: #b94a48;
}

If you already know CSS, you’ll see we’ve set a background color for the
main section of the page. We’ve also set styles for a header,
navigation links, and flash messages. This book is about Rails, not CSS,
so we won’t examine this closely. For more on CSS, there are thousands
of tutorials on the web, but I like these:

	Codeacademy

	HTML Dog

Remember what we learned about the Rails asset pipeline. By default, any
CSS file in the app/assets/stylesheets/ folder will be added
automatically to the application.css file that is included in the
default application layout.

In the next chapter, we remove the app/assets/stylesheets/simple.css
and use Bootstrap to supply styles for the header, navigation
links, and flash messages. For now, the simple.css file adds some
basic styling and layout to the application.

16.17 Test the Application

Let’s run the application to see how it looks with the new application
layout. The web server may already be running. If not, enter the
command:

$ rails server

Open a web browser window and navigate to
http://localhost:3000/.

If you experimented with adding flash messages “Welcome” and “My
birthday is soon,” you’ll see the messages when you visit the home page.

Our home page now has only one navigation link, for “Home.” We’ll add
links for “About” and “Contact” pages soon.

16.18 Git

Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "update application layout"
$ git push

 Chapter 17 Front-End Framework

This chapter discusses front-end development and design using CSS. I’ll
show you how to add style to a Rails application, using Bootstrap
for a simple theme.

What do we mean by “front-end development”? A website back end is the
Rails application that assembles files that are sent to the browser,
plus a database and any other server-side services. A website front
end is all the code that runs in the browser. Everything that controls
the appearance of the website in the browser is the responsibility of a
front-end developer, including page layout, CSS stylesheets, and
JavaScript code.

Front-end development has grown increasingly important as websites have
become more sophisticated. And front-end technology has grown
increasingly complex, to the degree that front-end development has
become a job for specialists.

Front-end developers are primarily concerned with:

	markup - the layout and structure of the page

	style - graphic design for visual communication

	interactivity - browser-based visual effects and user interaction

Broader concerns include:

	cross-browser and cross-device functionality

	interaction design to improve website usability

	accessibility for users with physical or perceptual limitations

For years, front-end development was haphazard; webmasters each had
their own quirky techniques. Around the time that Rails became popular,
front-end developers at large companies began to share best practices
and establish open source projects to bring structure and consistency to
front-end development, leading to development of CSS frameworks.

17.1 CSS Frameworks

Web developers began putting together “boilerplate” CSS stylesheets as
early as 2000, when browsers first began to fully support CSS.
Boilerplate CSS made it easy to reuse CSS stylesheet rules from project
to project. More importantly, designers often implemented “CSS reset”
stylesheets to enforce typographic uniformity across different browsers.

Engineers at Yahoo! released the Yahoo! User Interface
Library (YUI) as an open source project in
February 2006. Inspired by an
article by Jeff
Croft,
and reacting to the huge size of the YUI library, independent developers
began releasing other CSS frameworks such as the 960 grid
system and the
Blueprint CSS framework.

There are dozens of CSS
frameworks. In general,
they all seek to implement a common set of requirements:

	An easily customizable grid

	Some default typography

	A typographic baseline

	CSS reset for default browser styles

	A stylesheet for printing

More recently, with the ubiquity of smartphones and tablets, CSS
frameworks support responsive web
design,
accommodating differences in screen sizes across a range of devices.

In tandem with the development of CSS frameworks, we’ve seen the
emergence of JavaScript libraries and frameworks.

17.2 JavaScript Libraries and Frameworks

JavaScript has nothing like RubyGems, a built-in package manager for
code libraries, so initially there were few open source JavaScript
libraries. Now there are several competing JavaScript package
managers
and many software libraries.

Prototype
was one of the first open source JavaScript libraries, created by Sam
Stephenson in February 2005 to improve JavaScript support in Ruby on
Rails. MooTools,
Dojo, and
jQuery soon followed. Of these
libraries, jQuery has become the most popular, largely because of
thousands of modular jQuery plug-ins that implement a wide range of
effects and widgets (web page features). These plug-ins are used to
add visual effects and interactivity to web pages. Examples are
drop-down menus, modal windows, tabbed panels, autocompletion search
forms, and sliders or carousels for images. Even without plugins, jQuery
is useful as a high-level interface for manipulating the browser DOM
(document object
model), to make it
easy to do things like hiding or revealing HTML elements on a page. Any
Rails application can use jQuery because it is included by default in
any new Rails application.

Libraries such as jQuery add functionality to server-side applications,
such as those built with Rails. Other JavaScript libraries serve as
fully featured web application development frameworks, allowing
developers to build client-side applications that run in the browser and
only interact with a server to read or write data. Examples of these
full-fledged JavaScript frameworks are Ember.js,
AngularJS, and
Backbone.js. All use a variant of the
model-view-controller (MVC) software design pattern to implement
single-page applications
which function more like desktop or mobile applications than websites. Developers who build a single-page application with one of these
frameworks often use Ruby on Rails as a back end; an MVC JavaScript
framework can replace all the Rails view files. None of these JavaScript
frameworks dominate web application development like Ruby on Rails, but
they are gaining popularity for single-page applications. We won’t look at Ember.js, AngularJS, or Backbone.js
in this book; they are an advanced topic and require entire books
themselves.

The biggest problem with adding JavaScript to Rails is the difficult-to-maintain
“JavaScript soup” that results from adding JavaScript to Rails views. Ember.js, AngularJS, or Backbone.js are more than is needed for simply
structuring JavaScript in Rails views. But there’s a newer framework that can be
used to dry up JavaScript soup. It’s
React, a JavaScript framework developed by engineers at Facebook. Unlike AngularJS or Ember.js, React only manages views, not connections to databases or routing of requests, so it is not a full-stack framework, just a framework for the view layer. React’s approach to building web pages is abstract and complex. But React is a good choice for complex interactive features, if you’re determined to avoid JavaScript soup in your Rails application.

We won’t look at JavaScript frameworks in this book, but we will use the Bootstrap framework to manage
our CSS stylesheets.

17.3 Front-End Frameworks

Front-end frameworks combine CSS and JavaScript libraries. Many elements
that are found on sophisticated web pages, such as modal windows or
tabs, require a combination of JavaScript and CSS. Combining CSS and
JavaScript libraries in a common framework makes it possible to
standardize and reuse common web page features.

There are many responsive front-end frameworks to choose from,
including:

	Bootstrap

	Zurb Foundation

	Material Design Lite

	Bourbon Neat

	Semantic UI

	and many others

Each has its fans, though Bootstrap and Zurb Foundation are the most
popular among Rails developers. Each adds a library of markup, styles,
and standardized web page features such as modal windows, pagination,
breadcrumbs, and navigation.

Bootstrap is the best-known front-end
framework. It is the result of an effort to document and share common
design patterns and assets across projects at Twitter, released as an
open source project in August 2011.

Just ahead, we’ll look at why we use Bootstrap in this book. But
first, you’ll need to learn about Sass.

17.4 CSS Preprocessing with Sass

Ordinary CSS is not a programming language. As a result, CSS rules are
verbose and often repetitive. To add efficiency to CSS, Bootstrap
relies on a CSS preprocessor named Sass. Sass extends CSS to give it more powerful
programming language features. As a result, your stylesheets can use
variables, mixins, and nesting of CSS rules, just like a real
programming language.

For example, in Sass you can create a variable such as $blue: #3bbfce
and specify colors anywhere using the variable, such as
border-color: $blue. Mixins are like variables that let you use
snippets of reusable CSS. Nesting eliminates repetition by layering
CSS selectors.

Sass is included in any new Rails application with the default sass-rails gem.

17.5 Bootstrap or Others?

Which front-end framework should you use? Bootstrap or another such as Zurb Foundation?

The Bootstrap team maintains a Ruby gem that provides a drop-in version of Bootstrap for Rails. Other front-end frameworks, such as Zurb Foundation, are also available as Ruby gems. But
Bootstrap has a large developer community and many more third-party
projects, as evidenced by a Big Badass List of Useful Twitter Bootstrap
Resources. In its sheer magnitude, this list, from Michael Buckbee and Bootstrap
Hero, demonstrates the popularity of Bootstrap and the vitality of its
open source community. We’ll use Bootstrap here because of its sheer popularity
and solid support.

Before I show you how to integrate Bootstrap with your Rails
application, let’s briefly consider matters of design.

17.6 Graphic Design Options

There are three approaches to graphic design for your Rails application.

If you’re well-funded and well-connected, you can put together a team or
hire a freelance graphic designer to implement a unique design, built
from scratch using CSS or customized from a framework such as Bootstrap
or Zurb Foundation. If you’ve got strong design skills, or can partner
with an experienced web designer, you’ll get a custom design that
expresses the purpose and motif of your website.

A second approach is to use Bootstrap or another CSS framework to quickly add
attractive CSS styling to your application. Many developers don’t have
the skill or resources to customize the design. Consequently, sites that
use Bootstrap look very similar. If that’s your
situation, it’s okay, really! It’s better to have a decent site with the
clean look of Bootstrap than to leak ugliness onto the web.

A third option is to obtain a pre-designed theme for your website. You
may have visited ThemeForest or other theme
galleries that offer pre-built themes for a few dollars each. These huge
commercial galleries offer themes for WordPress, Tumblr, or CMS
applications such as Drupal or Joomla. They don’t offer themes for Rails. Your best option is to convert open source themes designed with Bootstrap. You can visit sites such as Start Bootstrap,
Bootswatch, or the
Themestrap gallery to find Bootstrap themes.

Whether you use a prepackaged theme or design your own layout, you’ll need to know how to set up a
front-end framework in Rails. We’ll look at setting up Bootstrap next.

17.7 Bootstrap 3 or 4?

At the time this was written, the new Bootstrap 4 version was in alpha release. The Bootstrap 4 version
is significantly different from earlier versions. It has been in alpha for testing and feedback for over a year. Many Rails developers are already using the Bootstrap 4 version but almost all themes and third-party add-ons are
only available for Bootstrap 3. Eventually, the Bootstrap 4 beta and final versions will be released but
until then, I recommend sticking with Bootstrap 3. As a beginner, you’ll find more resources and help for
Bootstrap 3. We’ll use it here for this tutorial.

17.8 Bootstrap Gem

Bootstrap provides a standard grid for layout plus dozens of
reusable components for common page elements such as navigation, forms,
and buttons. More importantly, it gives CSS the kind of structure and
convention that makes Rails popular for back-end development. Bootstrap is packaged as a gem.

In your Gemfile, you’ve already added:

gem 'bootstrap-sass'

and previously run $ bundle install.

The bootstrap-sass gem provides the files required to integrate Bootstrap 3 with Rails. Developers who want to use the new Bootstrap 4 release will use the Bootstrap 4 gem.

Rather than following the installation instructions provided in the
Bootstrap documentation, we’ll
use the rails_layout gem
to set up Bootstrap and create the files we need.

17.9 Rails Layout Gem with Bootstrap

In the previous chapter, we used the
rails_layout gem to
configure the default application layout with HTML5 elements, navigation
links, and flash messages. Now we’ll use the rails_layout gem to set up
Bootstrap and generate new files for the application layout as
well as the navigation and messages partials. The new files will replace
the layout files we created in the previous chapter.

We’ll use the generator provided by the rails_layout gem to set up
Bootstrap and add the necessary files. Run:

$ rails generate layout:install bootstrap3 --force

With the –force argument, the rails_layout gem will replace existing
files.

The gem will create the file:

	app/assets/stylesheets/1st_load_framework.css.scss

and modify the files:

	app/assets/javascripts/application.js

	app/views/layouts/_messages.html.erb

	app/views/layouts/_navigation.html.erb

	app/views/layouts/application.html.erb

It will also remove the file:

	app/assets/stylesheets/simple.css

Let’s examine the files to see how our application is configured to use
Bootstrap.

17.10 Renaming the application.css File

The rails_layout gem renamed the
app/assets/stylesheets/application.css file as
app/assets/stylesheets/application.css.scss. Note the .scss file
extension. This will allow you to use the advantages of an improved
syntax for your application stylesheet.

You learned earlier that stylesheets can use variables, mixins, and
nesting of CSS rules when you use Sass.

Sass has two syntaxes. The most commonly used syntax is known as “SCSS”
(for “Sassy CSS”), and is a superset of the CSS syntax. This means that
every valid CSS stylesheet is valid SCSS as well. SCSS files use the
extension .scss. The Sass project also offers a second, older syntax
with indented formatting that uses the extension .sass. We’ll use
the SCSS syntax.

You can use Sass in any file by adding the file extension .scss. The
asset pipeline will preprocess any .scss file and expand it as
standard CSS.

For more on the advantages of Sass and how to use it, see the
Sass website or the Sass Basics
RailsCast from Ryan
Bates.

Before you continue, make sure that the rails_layout gem renamed the
app/assets/stylesheets/application.css file as
app/assets/stylesheets/application.css.scss. Otherwise you won’t see
the CSS styling we will apply.

17.11 The application.css.scss File

In the previous chapter, I introduced the Rails asset pipeline.

Your CSS stylesheets get concatenated and compacted for delivery to the
browser when you add them to this directory:

	app/assets/stylesheets/

The asset pipeline helps web pages display faster in the browser by
combining all CSS files into a single file (it does the same for
JavaScript).

Let’s examine the file app/assets/stylesheets/application.css.scss:

/*
 * This is a manifest file that'll be compiled into application.css, which will include all the files
 * listed below.
 *
 * Any CSS and SCSS file within this directory, lib/assets/stylesheets, or any plugin's
 * vendor/assets/stylesheets directory can be referenced here using a relative path.
 *
 * You're free to add application-wide styles to this file and they'll appear at the bottom of the
 * compiled file so the styles you add here take precedence over styles defined in any other CSS/SCSS
 * files in this directory. Styles in this file should be added after the last require_* statement.
 * It is generally better to create a new file per style scope.
 *
 *= require_tree .
 *= require_self
 */

The app/assets/stylesheets/application.css.scss file serves two
purposes.

First, you can add any CSS rules to the file that you want to use
anywhere on your website. Second, the file serves as a manifest,
providing a list of files that should be concatenated and included in
the single CSS file that is delivered to the browser.

If you are familiar with CSS syntax, it may seem odd that the relevant
lines are commented out (using asterisks). These lines are not CSS, so
they must be commented out so they won’t be interpreted as CSS. Though
they are commented out, the Rails asset pipeline reads and understands
them. It’s a bit of a hack, but it works.

17.11.1 A Global CSS File

Any CSS style rules that you add to the
app/assets/stylesheets/application.css.scss file will be available
to any view in the application. You could use this file for any style
rules that are used on every page, particularly simple utility rules
such as highlighting or resetting the appearance of links. However, in
practice, you are more likely to modify the style rules provided by Bootstrap. These modifications don’t belong in the
app/assets/stylesheets/application.css.scss file; they will go in
the app/assets/stylesheets/1st_load_framework.css.scss file.

In general, it’s bad practice to place a lot of CSS in the
app/assets/stylesheets/application.css.scss file (unless your CSS is
very limited). Instead, structure your CSS in multiple files. CSS that
is used on only a single page can go in a file with a name that matches
the page. Or, if sections of the website share common elements, such as
themes for landing pages or administrative pages, make a file for each
theme. How you organize your CSS is up to you; the asset pipeline lets
you organize your CSS so it is easier to develop and maintain. Just add
the files to the app/assets/stylesheets/ folder.

17.11.2 A Manifest File

It’s not obvious from the name of the
app/assets/stylesheets/application.css.scss file that it serves as a
manifest file as well as a location for miscellaneous CSS rules. For
most websites, you can ignore its role as a manifest file. In the
comments at the top of the file, the *= require_self directive
indicates that any CSS in the file should be delivered to the browser. The *= require_tree . directive (note the Unix “dot operator”)
indicates any files in the same folder, including files in subfolders,
should be combined into a single file for delivery to the browser.

If your website is large and complex, you can remove the
*= require_tree . directive and specify individual files to be
included in the file that is generated by the asset pipeline. This gives
you the option of reducing the size of the application-wide CSS file
that is delivered to the browser. For example, you might segregate a
file that includes CSS that is used only in the site’s administrative
section. In general, only large and complex sites need this
optimization. The speed of rendering a single large CSS file is faster
than fetching multiple files.

17.12 Bootstrap JavaScript

Bootstrap provides both CSS and JavaScript libraries.

Like the application.css.scss file, the application.js file is a
manifest that allows a developer to designate the JavaScript files that
will be combined for delivery to the browser.

The rails_layout gem modified the file
app/assets/javascripts/application.js to include jQuery and the Bootstrap
JavaScript libraries:

//= require jquery
//= require jquery_ujs
//= require turbolinks
//= require bootstrap-sprockets
//= require_tree .

It added the directives //= require jquery and //= require jquery_ujs to
make jQuery available to the application.

Keep in mind that Rails 5.1 dropped jQuery and no longer includes the jquery-rails
gem by default. We added the jquery-rails gem to the Gemfile (and ran bundle install). Without the jquery-rails gem, you’ll get an error when you run the application.

The rails_layout command also added the directive //= require bootstrap-sprockets before
//= require_tree . to enable the Bootstrap front-end framework. Some of the features offered by Bootstrap require the jQuery library which is
why the rails_layout command modifies the app/assets/javascripts/application.js file.

17.13 Bootstrap CSS

The rails_layout gem added a file
app/assets/stylesheets/1st_load_framework.css.scss containing:

// import the CSS framework
@import "bootstrap-sprockets";
@import "bootstrap";
.
.
.

The file app/assets/stylesheets/1st_load_framework.css.scss is
automatically included and compiled into your Rails application.css file
by the *= require_tree . statement in the
app/assets/stylesheets/application.css.scss file. The file could be
named anything. However, by giving it a name beginning with “1” it will
load before any other stylesheet files we may add later. The asset
pipeline loads files in alphabetical order. We want the Bootstrap
framework to load before any custom CSS files.

The @import "bootstrap"; and @import "bootstrap-sprockets"; directives will import the Bootstrap CSS
rules from the Bootstrap gem.

You could add the Bootstrap @import code to the
app/assets/stylesheets/application.css.scss file. However, it is
better to have a separate
app/assets/stylesheets/1st_load_framework.css.scss file. You may
wish to modify the Bootstrap CSS rules; placing changes to Bootstrap
CSS rules in the 1st_load_framework.css.scss file will keep your
CSS better organized.

In addition to the simple @import directives, the
app/assets/stylesheets/1st_load_framework.css.scss contains a
collection of Sass mixins. We’ll look at these later in the chapter.

17.14 Using Bootstrap CSS Classes

Now that you’ve installed Bootstrap, you have a rich library of
interactive effects you can add to your pages.

Take a look at the Bootstrap documentation to see your options. Here are just a few examples:

	buttons

	navigation bar

	alerts

At a simpler level, Bootstrap provides a collection of
carefully-crafted styling rules in the form of CSS classes. These are
building blocks you use for page layout and typographic styling. For
example, Bootstrap gives you CSS classes to set up rows and columns in
a grid system.

Let’s take a closer look at the Bootstrap grid system.

17.14.1 Bootstrap Grid

The Bootstrap grid is responsive because it has “breakpoints.” There
are actually four grids:

	Extra small: browser windows 0 to 768 pixels wide (phones)

	Small: browser windows 768 to 992 pixels wide (tablets)

	Medium: browser windows 992 to 1200 pixels wide (desktops)

	Large: browser windows 1200 pixels and wider (large desktops)

Start by designing for the extra small screen; then add classes prefixed “small,”
“medium,” or “large” if you want a different layout for larger screens. The layout will change at each breakpoint.

The grid gives you 12 columns by default. You can organize your layout
in horizontal and vertical sections using row and columns classes.

For example, you could use Bootstrap grid classes to set up an
application layout with a footer as a row with two sections:

<div class="container">
 <footer class="row">
 <section class="col-xs-4">
 Copyright 2016
 </section>
 <section class="col-xs-8">
 All rights reserved.
 </section>
 </footer>
</div>

The Bootstrap row class will create a horizontal break. The footer
will contain two side-by-side sections. The first will be four columns
wide; the second will be eight columns wide.

Here’s the same footer with a responsive design:

<div class="container">
 <footer class="row">
 <section class="col-xs-12 col-sm-4">
 Copyright 2016
 </section>
 <section class="col-xs-12 col-sm-8">
 All rights reserved.
 </section>
 </footer>
</div>

On desktops and tablets, the footer will contain two side-by-side
sections. On phones, each section will expand to take the full browser
width, appearing as stacked rows.

To better understand the grid system with all its options, see the
documentation for the Bootstrap grid.

17.14.2 Presentational Versus Semantic Styles

There are two schools of thought among front-end developers. Some
developers are content to use Bootstrap’s classes directly in Rails
view files. For these developers, the Bootstrap classes are both
practical and descriptive, making it easy for any developer who knows
the Bootstrap framework to visualize the layout of a page.

Other developers take issue with this approach. They argue that
Bootstrap’s markup is often presentational, with class names
describing the appearance of the page. In an ideal world, all markup
would be semantic, with class names describing the function or purpose
of a style. For example, a submit button often needs styling. Compare
these two approaches to markup:

	presentational: <button class="big red button">Order Now</button>

	semantic: <button class="submit">Order Now</button>

Suppose your user testing indicates a green button generates more sales. With the presentational approach you’d have to change both the Rails
view file and the CSS file. With a semantic approach, you’d just change
the CSS file to reassign the color of the submit class.

17.14.3 Use Bootstrap Classes Directly

For quick and simple websites, where you don’t need to be concerned
about long-term maintenance, use Bootstrap’s CSS classes directly.

For example, you can style a button like this:

	<button type="button" class="btn btn-success">Order Now</button>

The btn-success class is semantic and applies an “alert color”
which is green, by default, in Bootstrap.

17.14.4 Or Use Sass Mixins with Bootstrap

You can use Sass mixins to create your own semantic class names.

Sass mixins add a layer of complexity that can map Bootstrap class
names to your own semantic class names.

For example, the Bootstrap grid system is presentational. Specifying
rows and columns, and quantifying the size of columns, describes the
visual appearance of sections of the layout rather than the purpose of
each section. The presentational approach makes it easy to visualize the
layout of a page. But you’ll be tied to Bootstrap 3 class names for
the life of your website. If class names change in a future version of Bootstrao, or
you decide to switch to another front-end framework, it will be
difficult to update your application, as you will have to carefully
rebuild each view file.

Is it worth the effort to add the complexity of Sass mixins just to
future-proof your website? Probably not for a simple website such as the
one you are building for Foobar Kadigan.

The rails_layout gem uses Sass mixins to apply CSS style rules to the
default application layout. In doing so, the default application layout
is free of framework-specific code and can be used with either Bootstrap
or Zurb Foundation.

Before we examine the default application layout, let’s take a look at
the Sass mixins supplied by the rails_layout gem.

Look again at the file
app/assets/stylesheets/1st_load_framework.css.scss created by the
rails_layout gem:

// import the CSS framework
@import "bootstrap-sprockets";
@import "bootstrap";

// make all images responsive by default
img {
 @extend .img-responsive;
 margin: 0 auto;
 }
// override for the 'Home' navigation link
.navbar-brand {
 font-size: inherit;
 }

// THESE ARE EXAMPLES YOU CAN MODIFY
// create your own classes
// to make views framework-neutral
.column {
 @extend .col-md-6;
 @extend .text-center;
 }
.form {
 @extend .col-md-6;
 }
.form-centered {
 @extend .col-md-6;
 @extend .text-center;
 }
.submit {
 @extend .btn;
 @extend .btn-primary;
 @extend .btn-lg;
 }
// apply styles to HTML elements
// to make views framework-neutral
main {
 @extend .container;
 background-color: #eee;
 padding-bottom: 80px;
 width: 100%;
 margin-top: 51px; // accommodate the navbar
 }
section {
 @extend .row;
 margin-top: 20px;
 }

The rails_layout gem is in active development so the file you’ve
created may be different from the example in this tutorial. It will
probably be very similar.

At the top of the file we import the Bootstrap framework CSS files from
the gem.

We override a Bootstrap style rule so the “Home” navigation link
matches the other links in the navigation bar.

Then we use mixins to create semantic classes.

Mixins can take a block of CSS styles, other mixins, or a CSS selector (a CSS class or ID).

If you’d like to combine CSS classes, or rename a CSS class, use the
@extend directive.

The first declaration column combines the Bootstrap
classes col-md-6 and text-center to make a new class, column.

Next we create a few classes that combine Bootstrap
CSS classes. For example, the new submit class can be used for a
button. When we use it in a view, this class will be purely
semantic since it describes the purpose of the element, allowing us to
set its appearance outside of any view file.

Finally, to avoid applying Bootstrap classes in the application layout
file, we apply styles to HTML elements main and section to make the
views framework-neutral. We use the @extend directive to add a Bootstrap
CSS class. And we directly set standard CSS properties such as background-color
and margin-top.

Using this technique, the file
app/assets/stylesheets/1st_load_framework.css.scss becomes the
single point of intersection between the Bootstrap framework and the
application layout. For a simple website, this could be over-engineering
and counter-productive. The rails_layout gem uses the technique so that
either Bootstrap or Zurb Foundation can be used without any change to
the default application layout.

We’ll use the CSS classes provided by the rails_layout gem in the
tutorial application, but if you choose to customize the application,
feel free to use Bootstrap classes directly to keep your project
simple.

17.15 Application Layout with Bootstrap

Let’s look at the application layout file created by the rails_layout
gem:

Examine the contents of the file
app/views/layouts/application.html.erb:

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title><%= content_for?(:title) ? yield(:title) : "Learn Rails" %></title>
 <meta name="description"
 content="<%= content_for?(:description) ? yield(:description) : "Learn Rails" %>">
 <%= stylesheet_link_tag 'application', media: 'all', 'data-turbolinks-track' => 'reload' %>
 <%= javascript_include_tag 'application', 'data-turbolinks-track' => 'reload' %>
 <%= csrf_meta_tags %>
 </head>
 <body>
 <header>
 <%= render 'layouts/navigation' %>
 </header>
 <main role="main">
 <%= render 'layouts/messages' %>
 <%= yield %>
 </main>
 </body>
</html>

This file is almost identical to the simple application layout file we
looked at in the previous chapter.

Because we’ve applied Bootstrap classes to the HTML element main in
the app/assets/stylesheets/1st_load_framework.css.scss file,
there’s no need to use Bootstrap classes directly in the application
layout.

17.16 Flash Messages with Bootstrap

The messages partial we use with Bootstrap is complex.

Examine the file app/views/layouts/_messages.html.erb:

<%# Rails flash messages styled for Bootstrap 3.0 %>
<% flash.each do |name, msg| %>
 <% if msg.is_a?(String) %>
 <div class="alert alert-dismissible
 alert-<%= name.to_s == 'notice' ? 'success' : 'danger' %>">
 <button type="button" class="close" data-dismiss="alert"
 aria-hidden="true">×</button>
 <%= content_tag :div, msg, :id => "flash_#{name}" %>
 </div>
 <% end %>
<% end %>

We use each to iterate through the flash hash, retrieving a name and
msg that are passed to a block to be output as a string. The
expression if msg.is_a?(String) serves as a test to make sure we only
display messages that are strings.

We construct a div that applies
Bootstrap CSS styling around the message. Bootstrap provides classes
alert and alert-dismissible to style the message.

We use the Ruby ternary operator to check the type of the alert. A class of either success or danger styles the message. Rails notice messages will get styled with the Bootstrap success class. Any other Rails
messages, including alert messages, will get styled with the
Bootstrap danger class.

We use the Rails content_tag view helper to create a div containing
the message.

Bootstrap creates a “close” icon by applying the class alert-dismissible. Bootstrap’s integrated JavaScript library will hide the alert box when
the “close” link is clicked.

Bootstrap provides detailed documentation
if you want to change the styling of the alert boxes.

17.17 Navigation Partial with Bootstrap

The layout and styling required for the Bootstrap navigation bar are in
the navigation partial file.

Examine the file app/views/layouts/_navigation.html.erb:

<%# navigation styled for Bootstrap 3.0 %>
<nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-collapse">
 Toggle navigation

 </button>
 <%= link_to 'Home', root_path, class: 'navbar-brand' %>
 </div>
 <div class="collapse navbar-collapse">
 <ul class="nav navbar-nav">
 <%= render 'layouts/navigation_links' %>

 </div>
 </div>
</nav>

The navigation partial is now more complex, with layout and Bootstrap
classes needed to produce a responsive navigation bar.

At the conclusion of this chapter, you’ll test the responsive navigation
by resizing the window. At small sizes, the navigation links will
disappear and be replaced by an icon labeled “Menu.” Clicking the icon
will reveal a vertical menu of navigation links. The navigation menu is
a great demonstration of the ability of Bootstrap to adjust to the
small screen size of a tablet or smartphone.

If you’d like to add a site name or logo to the tutorial application,
you can replace the link helper <%= link_to ’Home’, root_path %>. It
is important to preserve the enclosing layout and classes, even if you
don’t want to display a site name or logo. The enclosing layout is used
to generate the navigation menu when the browser window shrinks to
accommodate a tablet or smartphone.

You’ll see we wrap the nested partial
render ’layouts/navigation_links’ with Bootstrap classes to complete
the navigation bar.

17.18 Navigation Links Partial

The file app/views/layouts/_navigation_links.html.erb is
unchanged:

<%# add navigation links to this file %>

Later we’ll add links to “About” and “Contact” pages.

The navigation links partial will be simply a list of navigation links.

We’re following the separation of concerns principle here. By
separating the links from the styling that creates the navigation bar,
we segregate the code that is unique to Bootstrap. In the future,
if the Bootstrap layout or CSS classes change, we can make changes
without touching the navigation links. If we wish, we can replace the
navigation partial and substitute one that uses a different framework instead
of Bootstrap, leaving the navigation links intact.

17.19 Test the Application

Let’s see how the application looks with Bootstrap. The web server
may already be running. If not, enter the command:

$ rails server

Open a web browser window and navigate to
http://localhost:3000/.

You should see a new page design that displays Bootstrap styling. Thanks to the open source efforts of the Bootstrap core team and contributors, we’ve added powerful
front-end features to our website with little effort.

You can click the “X” close icons to hide the flash messages, thanks to
the integrated CSS and JavaScript of the Bootstrap framework.

Next we’ll add “About” and “Contact” pages to the application. After we
update the navigation links, you’ll see how the Bootstrap responsive
web design adjusts the navigation bar at different browser widths.

17.20 Remove the Flash Messages

Before we continue, we’ll remove the flash messages we created for our
demonstration.

Update the file app/controllers/visitors_controller.rb:

class VisitorsController < ApplicationController

 def new
 @owner = Owner.new
 end

end

17.21 Git

Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "front-end framework"
$ git push

 Chapter 18 Add Pages

Let’s begin adding pages to our web application.

There are three types of web pages in a Rails application. We’ve looked
at two types so far:

	static pages in the public/ folder that contain no Ruby code

	dynamic pages such as our home page that use the application layout

There’s another type of web page that is required on many websites. It
has static content; that is, no dynamic data is needed on the page. But
it uses the default application layout to maintain consistency in the
website look and feel. We classify this type of page as a:

	static view that uses the application layout

Examples include:

	“About” page

	Legal page

	FAQ page

It’s possible to place these pages in the public/ folder and copy
the HTML and CSS from the default application layout but this leads to
duplicated code and maintenance headaches. And dynamic elements such as
navigation links can’t be included. For these reasons, developers seldom
create static pages in the public/ folder.

Alternatively, a dynamic page can be created that has no model, a
nearly-empty controller, and a view that contains no instance variables. This solution is quite common for static views that use the application
layout.

This solution is implemented so frequently that many developers create a
gem to encapsulate the functionality. We’re going to use the best-known
of these gems, the high_voltage
gem created by the
Thoughtbot consulting firm.

We’ll use the High Voltage gem to create an “About” Page.

We also will create a Contact page. We’ll again use the High Voltage
gem, but only for the first version of the Contact page. Later we’ll
discard the page we created with the High Voltage gem and replace it
with a full model-view-controller implementation. The process will show
the difference between an older form of web application architecture and
a newer “Rails way.”

18.1 High Voltage Gem

We can add a page using the High Voltage gem almost effortlessly. The
gem implements Rails “convention over configuration” so well that there
is nothing to configure. There are alternatives to its defaults which
can be useful but we won’t need them; visit the GitHub home page for the
high_voltage gem if you
want to explore all the options.

In your Gemfile, you’ve already added:

gem 'high_voltage'

and previously run $ bundle install.

18.2 Views Folder

Create a folder app/views/pages:

$ mkdir app/views/pages

Any view files we add to this directory will automatically use the
default application layout and appear when we use a URL that contains
the filename.

The High Voltage gem contains all the controller and routing magic
required for this to happen.

Let’s try it out.

18.3 “About” Page

Create a file app/views/pages/about.html.erb:

<% content_for :title do %>About<% end %>
<h3>About Foobar Kadigan</h3>
<p>He was born in Waikikamukau, New Zealand. He left New Zealand for England,
 excelled at the University of Mopery, and served in the Royal Loamshire Regiment.
 While in service, he invented the kanuten valve used in the processing of
 unobtainium for industrial use. With a partner, Granda Fairbook, he founded
 Acme Manufacturing, later acquired by the Advent Corporation, to develop his
 discovery for use in the Turboencabulator. Mr. Kadigan is now retired and
 lives in Middlehampton with a favorite cat, where he raises Griadium frieda
 and collects metasyntactic variables.</p>
<p>His favorite quotation is:</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
 tempor incididunt ut labore et dolore magna aliqua.</p>

Our simple “About” view will be combined with the default application
layout by the High Voltage gem.

We include a content_for Rails view helper that passes a page title to
the application layout.

18.4 Contact Page

For the initial version of the Contact page, create a file
app/views/pages/contact.html.erb:

<% content_for :title do %>Contact<% end %>
<h3>Contact</h3>

This is a placeholder page we’ll use to test a navigation link.

We include a content_for Rails view helper that passes a page title to
the application layout.

18.5 Routing for the High Voltage Gem

The High Voltage gem provides a PagesController. You’ll never see it; it
is packaged inside the gem.

In addition to providing a controller, the High Voltage gem provides
default routing so any URL with the form
http://localhost:3000/pages/about
will obtain a view from the app/views/pages directory.

Like the PagesController, the code that sets up the route is packaged
inside the gem. For details about the syntax of routing directives,
refer to RailsGuides: Routing from the Outside
In.

18.6 Update the Navigation Partial

You can use a Rails route helper to create a link to any view in the
app/views/pages directory like this:

link_to 'About', page_path('about')

Let’s add links to the “About” and “Contact” pages.

Replace the contents of the file
app/views/layouts/_navigation_links.html.erb with this:

<%# add navigation links to this file %>
<%= link_to 'About', page_path('about') %>
<%= link_to 'Contact', page_path('contact') %>

With an updated navigation bar, we can test the application.

18.7 Test the Application

The web server may already be running. If not, enter the command:

$ rails server

Open a web browser window and navigate to
http://localhost:3000/.

Links to the pages “About” and “Contact” should work.

If you get an error “uninitialized constant PagesController,” make sure
the config/routes.rb file looks like this:

Rails.application.routes.draw do
 root to: 'visitors#new'
end

Watch what happens when you resize the page. At smaller sizes, the
navigation bar changes to display a menu icon. Clicking the menu icon
reveals a drop-down menu of navigation links. You’re seeing the power of
the Bootstrap framework.

Here’s a troubleshooting tip. If clicking the menu icon doesn’t reveal a
drop-down menu, the application may not be loading the Bootstrap
JavaScript library. Make sure that the file
app/assets/javascripts/application.js contains:

//= require jquery
//= require jquery_ujs
//= require turbolinks
//= require bootstrap-sprockets
//= require_tree .

18.8 Git

Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "add 'about' and 'contact' pages"
$ git push

There is nothing more we need for our “About” page.

In the next chapter, we’ll explore two different implementations for the
Contact page.

 Chapter 19 Contact Form

Forms are ubiquitous on the web, to the degree we seldom notice how
often they are used for data entry, whether we’re logging into a website
or posting a blog comment. To build any interactive website, you’ll need
to understand forms. Here we’ll build a contact form for our tutorial
application.

A contact form is common on many websites. If you think about it,
contact forms are often unnecessary; simply displaying an email address
is sufficient, more convenient, and easier to implement. But building a
contact form is an excellent way to learn how to handle user data input. We’ll pretend that our odd client, Mr. Foobar Kadigan, insists that he
needs a contact form on his website.

We’re not backing the tutorial application with a database so we won’t
store the contact data after the information is submitted. Instead, in a
subsequent chapter we’ll learn how to send the contents of the form by
email to the website owner.

19.1 The “Old Way” and the “Rails Way”

In this chapter, we’ll explore two ways to implement a contact form. The
first way will be familiar to anyone who has used PHP or similar web
platforms. It is an obvious and straightforward way to handle a form. As
we look closer, we’ll see the approach has limitations. We’ll discard
our first approach and rebuild the Contact page, discovering how the
“Rails way” is more powerful.

You may wonder why I’m going to show you two different ways to implement
the contact form.

First, it is worthwhile to see there is more than one way to implement a
web application. Maturity as a software developer means imagining
different approaches and evaluating your options. With this exercise,
you’ll contrast two approaches and see how we make choices about
software architecture.

More importantly, it is not always obvious why we do things in a “Rails
way.” It would be easy to simply walk you through the steps to build a
contact form without showing you alternative implementations (that’s how
most tutorials do it). But you’ll gain a deeper understanding of Rails
by building the contact form in a less sophisticated fashion and then
seeing the more elegant Rails approach.

19.2 User Story

Let’s plan our work with a user story:

Contact Page
As a visitor to the website
I want to fill out a form with my name, email address, and some text
In order to send a message to the owner of the website

Our first step will be to create a route to a controller that will
process the submitted form.

19.3 Routing

We’re going to create a ContactsController to process the submitted form
data. Every form must have a destination URL that receives the form
submission. We need to set a route to generate the destination URL.

Open the file config/routes.rb. Replace the contents with this:

Rails.application.routes.draw do
 post 'contact', to: 'contacts#process_form'
 root to: 'visitors#new'
end

The route post ’contact’, to: ’contacts#process_form’ will create a
route helper that generates a URL and hands off the request to a
controller.

You can run the rails routes command to see our routes in the console:

$ rails routes
 Prefix Verb URI Pattern Controller#Action
contact POST /contact(.:format) contacts#process_form
 root GET / visitors#new
 page GET /pages/*id high_voltage/pages#show

The output of the rails routes command is somewhat cryptic but confirms
we’ve created the routes we need.

The first item in the rails routes output indicates we can add
“contact” to “_path” to get our route helper, contact_path:

	contact_path - a route helper that can be used in a controller or
view

The second item indicates the request will be handled with the HTTP POST
protocol:

	POST - HTTP method to submit form data

The third item indicates the application will respond to the following
URL:

	http://localhost:3000/contact - URL
generated by the route helper

The fourth item indicates a request to the URL will be handled by:

	contacts - the name of the controller

	process_form - a controller action

For details about the syntax of routing directives, refer to
RailsGuides: Routing from the Outside In.

The route won’t work yet; we need to create a ContactsController. But
first we’ll create the form.

19.4 Adding a Form to the Contact Page

Let’s add the code for a contact form to the Contact page.

Forms were simple in the early days of the web. An HTML <form> tag creates a container for
a form. The form element specifies a URL (an “action”) which receives and processes the form submission. Form fields accept input such as text or checkboxes. A submit button gathers the input and sends a request to the URL specified in the form action.

Rails tries to simplify forms and make them more powerful. First, to simplify forms, Rails provides a set of view helpers for forms. These view helpers automate the creation of the necessary HTML elements. Some developers use an alternative set of form helpers (such as the SimpleForm gem) which make the syntax of forms even simpler. Form helpers such as SimpleForm add a dependency that I like to avoid (sometimes the gem is not updated or breaks). We’ll use the standard Rails form helpers.

Rails also makes forms more powerful by providing a form builder that can be associated with a model. Associating a model with a form allows Rails to perform validation on the input data. We’ll first build a form without a model (the “old way”) and then add a model (the “Rails way”).

Unfortunately, in the quest for simplicity and power, the Rails maintainers have made forms much more complicated than the original HTML specification. A large part of the complication is a new forms syntax introduced in Rails 5.1. Prior to Rails 5.1, Rails provided two different ways to create forms. One approach, using the form_tag directive, was simpler and didn’t use a form builder and associated model. The second approach, using the form_for directive, was more powerful and widely used because it enabled validation of form data using an associated model. In Rails 5.1, the Rails maintainers introduced a third approach, using the form_with directive. The form_with approach replaces both the form_tag and form_for directives, combining both earlier approaches in one set of view helpers.

There is very little documentation to explain how to use the form_with approach. As of this writing, the RailsGuides: Rails Form Helpers official document has not been updated for the new form_with syntax. Most tutorials (and Stack Overflow answers) explain forms using the form_tag or form_for helpers. The only official documentation is the Rails API document. These are persuasive reasons not to use the new form_with syntax. However, a future version of Rails will deprecate (remove) the form_tag or form_for helpers. It’s best to learn to use form_with for your forms. Our tutorial will use form_with.

Replace the contents of the file app/views/pages/contact.html.erb:

<% content_for :title do %>Contact<% end %>
<h3>Contact</h3>
<div class="form">
 <%= form_with(url: contact_path) do |form| %>
 <%= form.label :name %>
 <%= form.text_field :name, autofocus: true %>

 <%= form.label :email %>
 <%= form.email_field :email %>

 <%= form.label 'message' %>
 <%= form.text_area :content, size: '40x5' %>

 <%= form.submit 'Submit', class: 'submit' %>
 <% end %>
</div>

The code is compact but complex. We see several elements:

	content_for is a view helper that passes a page title to the
application layout

	<div class="form"> sets the width of the form and applies any
styles we desire

	form_with is the view helper for the form

The form_with view helper instantiates a form builder object which we
assign to a variable named form. The form builder offers many standard form
elements, such as text fields and submit buttons. Each element is
available as a method call on the form object.

The view helper form_with requires parameters and a block.

Every form needs a URL that will handle
processing of the form data. In this case, we specify a route in the application:

	url - set to contact_path, the destination for the form data

Later, when we change this form to accommodate the”Rails way,” we’ll
replace these two parameters with a single instance variable. The magic
of Rails will generate the name of the form and the destination URL from
the instance variable. For now, to implement the “old way,” we simply supply
the destination URL.

The form_with view helper accommodates a Ruby block. The block
begins with do and closes with end. The code inside the block works
just like code inside a method. In this case, the form object is
passed to the block and methods belonging to the form object are
called to produce HTML output.

Inside the block, the form object methods generate HTML for:

	a name field

	an email field

	a content field (labeled “message”)

	a submit button

Each of the form methods takes various parameters, such as:

	autofocus - displays the cursor in the field

The structure of the form is clearly visible in the code. The form
begins with a form_with helper and closes with the end
keyword. Each line of code produces an element in the form such as a
field or a button.

This is a common structure for a Rails view helper and it will soon
become familiar.

19.5 Controller

We need code to process the form data. The form data is sent to the
server as a POST request attached to a URL. As we’ve learned, in Rails
we use controllers to respond to browser requests. For this
implementation, we’ll create a ContactsController to process the
submitted form data.

Create a file app/controllers/contacts_controller.rb:

class ContactsController < ApplicationController

 def process_form
 Rails.logger.debug "DEBUG: params are #{params.inspect}"
 flash[:notice] = "Received request from #{params[:name]}"
 redirect_to root_path
 end

end

The ContactsController inherits the behavior of the base
ApplicationController.

We create a process_form method to respond when the form is submitted. Later we’ll learn that process_form doesn’t fit the “Rails way.” We’ll
use it for now.

Before we look closely at the code for the process_form method, we
need to learn about the params hash.

19.5.1 Params Hash

Take a close look at these two lines:

 Rails.logger.debug "DEBUG: params are #{params.inspect}"
 flash[:notice] = "Received request from #{params[:name]}"

Notice the params object.

Earlier we learned about the Ruby Hash class. It is a data structure
for key/value pairs and Hash instances are ideal for storing form data. Each field on the form can be mapped as label and data, or key and
value, and stored in a Hash.

Rails does all the work of extracting the form data from the browser’s
POST request. Rails creates a hash with the form field data mapped to
the form field labels. Here’s part of the hash:

{... "name"=>"Daniel", "email"=>"daniel@danielkehoe.com", "content"=>"hi" ...}

The full params hash actually contains more data which we can see with a debug command:

{"utf8"=>"✓", "authenticity_token"=>"...", "name"=>"Daniel",
"email"=>"daniel@danielkehoe.com", "content"=>"hi", "commit"=>"Submit",
"controller"=>"contacts", "action"=>"process_form"}

The params hash includes these elements:

	the utf8 checkmark character forces browsers to recognize Unicode

	the authenticity token prevents CSRF (Cross Site Request Forgery)

	form data

	current controller

	current action

You will see the contents of the params hash in the console log after
you submit the form. We’ll look at the console log when we test the
implementation.

19.5.2 Process_form Method

Now that we know about the params hash, take a look again at the
process_form method:

 def process_form
 Rails.logger.debug "DEBUG: params are #{params.inspect}"
 flash[:notice] = "Received request from #{params[:name]}"
 redirect_to root_path
 end

We use a logger.debug method to reveal the form data in our console
log by revealing the contents of the params hash. The inspect method
shows the parameters in an easy-to-read list.

Then we extract the data posted to the name field of the form and
construct a flash message. A hash containing the data from the contact
form is nested inside the params hash. We can retrieve the value of
the name field with the expression params[:name]. We use
double quotes and string interpolation to form the message using the
#{...} syntax that evaluates a Ruby expression and combines it with a
string.

Finally we use the redirect_to directive to render the home page.

We haven’t actually sent the contact data to anyone. We’ll add code for
that later, after we refactor the controller to be a better example of
the “Rails way.” Before we do that, let’s test the current
implementation. We’ve already set up routing for the new controller.

19.6 Test the Application

If you need to start the server:

$ rails server

Open a web browser window and navigate to
http://localhost:3000/.

Click the “Contact” link; then fill out and submit the form.

You should see the flash message “Received request from …” on the home
page. If you see the message “My birthday is soon” you need to delete
your earlier experiment from the Visitors controller.

If you get an error message “uninitialized constant ContactsController,”
make sure you created the file app/controllers/contacts_controller.rb as instructed above.

Notice what appears in the console log:

Started POST "/contact" for 127.0.0.1 at 2017-07-19 16:22:13 +0800
Processing by ContactsController#process_form as JS
 Parameters: {"utf8"=>"✓", "authenticity_token"=>"..", "name"=>"Daniel", "email"=>"daniel@danielkehoe.com", "content"=>"hi", "commit"=>"Submit"}
DEBUG: params are <ActionController::Parameters {"utf8"=>"✓", "authenticity_token"=>"...", "name"=>"Daniel", "email"=>"daniel@danielkehoe.com", "content"=>"hi", "commit"=>"Submit", "controller"=>"contacts", "action"=>"process_form"} permitted: false>
Redirected to http://localhost:3000/
Completed 200 OK in 7ms

The console log is our most important tool for debugging. Let’s analyze
what we see:

	Started POST - shows the server is responding to an HTTP POST request

	“/contact” - the path portion of the URL

	at … - timestamp

	Processing by ContactsController - the controller

	process_form - the controller action (the method that handles the request)

	as JS - the standard syntax (not XML or some other markup)

	Parameters: - the params hash containing all the submitted data

	“utf8”=”✓” - a Rails workaround to set the language encoding in Internet Explorer

	“authenticity token” - prevents CSRF security exploits

	the form data

	“commit” - the “Submit” label from the button

	DEBUG - our debug message containing the form data

	Redirected to http://localhost:3000/ - responded by displaying the home page

	Completed 200 OK - HTTP response status code 200 indicating success

	in 7ms - time required to process the request

That’s a lot of data. For now, we really only care about the form data
buried in the params hash.

You can see that we really don’t need the debug message because the
console log shows us the contents of the params hash.

19.7 The Validation Problem

It looks like we’ve got everything we need to handle a form submission. As a next step, we could implement code to send an email message using
form data extracted from the params hash.

But consider a potential problem. What if the email address is poorly
formed? The visitor will think the message has been sent but it will
never be delivered.

Or what if the name field or message is blank? It’s not just a problem
for the hapless visitor. An evildoer could repeatedly click the submit
button, filling Foobar Kadigan’s email inbox with endless empty
messages.

We need validation of the form data before we process it.

We could dig into the Rails String API and look for a way to test if
the string is empty or contains only whitespaces. And we could raise an
Exception if the string is blank.

Here’s what validation code could look like. We won’t use this code
(because there’s a better way to do this):

class ContactsController < ApplicationController

 def process_form
 if params[:name].blank?
 raise 'Name is blank!'
 end
 if params[:email].blank?
 raise 'Email is blank!'
 end
 if params[:content].blank?
 raise 'Message is blank!'
 end
 message = "Received request from #{params[:name]}"
 redirect_to root_path, :notice => message
 end

end

We would need additional code to test for invalid email addresses (it
will be a complex regex, or regular expression). And we would need a
nicer way of showing the error to the visitor (right now, raising the
exception displays an error message that makes it appear the application
is broken). If we were implementing this on another web application
platform, we might go further down this path, googling for code
examples, and implementing a lengthy but bulletproof validation
function.

Rails offers a better way.

19.8 Remove the Contact Page

We will implement a model-view-controller architecture for our Contact
feature. That means we need a Contact model, a Contacts controller, and
view files in the app/views/contacts/ folder.

We no longer need the Contact page in the app/views/pages/ folder.

Let’s get started by removing the file
app/views/pages/contact.html.erb:

$ rm app/views/pages/contact.html.erb

Before we implement a model-view-controller architecture, let’s take
time to understand the advantages of the Rails model-view-controller
approach.

19.9 Implementing the “Rails Way”

Our initial implementation of the contact form is consistent with the
earliest approach to web application development. That’s why I call it
the “old way.” It is an approach that originated in 1993 with a
specification for CGI, the Common Gateway
Interface. Before CGI, every page on the web existed only as a static HTML file. CGI made it possible to run a program, or CGI script, that dynamically
generated HTML. In the early years of the web, every web URL matched
either an HTML file or a CGI script. This is the “page paradigm” of the
web.

So far, we’re following the “page paradigm.” Our Contact page hosts the
form. Clicking the submit button makes a request to another page that is
actually a program that returns HTML. Until the late 1990s, this is how
the web worked. But soon after the introduction of CGI, developers began
exploring the possibility of running a single program (an application
server) that responds to any URL, parsing the URL to establish routing,
and generating pages dynamically. This was the genesis of the “web
application paradigm.” It’s how Rails works.

The web application paradigm frees us from one-to-one correspondence of
a URL with a single file or script. It allows us to refactor our code
into object-oriented classes and methods that can be inherited rather
than duplicated, which means we don’t repeat the same code on every page
that processes a form.

The web application paradigm makes it possible to use the
model-view-controller architecture. Instead of looking at the web as
URLs that return pages, we see requests that are routed to controllers
that render views. We can segregate any code that manipulates data into
a model class, instead of mixing HTML with data manipulation in a single
script. With the “web application paradigm,” we can have a generic model
class that isolates the code that connects to a database or validates
form data. We can create models that inherit the generic behavior from a
parent class and get a database connection or validation “for free.” Unlike the “page paradigm,” we’ll avoid duplicating validation code
every time we need to process a form.

Consider our process_form method again:

class ContactsController < ApplicationController

 def process_form
 if params[:name].blank?
 raise 'Name is blank!'
 end
 if params[:email].blank?
 raise 'Email is blank!'
 end
 if params[:content].blank?
 raise 'Message is blank!'
 end
 message = "Received request from #{params[:name]}"
 redirect_to root_path, :notice => message
 end

end

We’ll replace it with something better.

Our “segregation of concerns” philosophy suggests that validation belongs
in a model, since validation is a type of data manipulation (strictly
speaking, a test of data integrity). Furthermore, it would be nice to
make the validation tests generic so they could be used to validate data
submitted from any form.

Rails, as a framework, provides all this for us. We call it the “Rails
way.”

19.10 ActiveModel

Rails extracts and generalizes common code that every website requires. The code that websites need for access to databases is abstracted into
the Rails
ActiveRecord
class. ActiveRecord includes code from the
ActiveModel
class that handles interaction with forms and data validation.

The ActiveModel class interfaces with SimpleForm to provide
sophisticated validation and error handling. We can mix in behavior from
the ActiveModel class to add validation and error handling to any model
we create.

SimpleForm will recognize ActiveModel methods if we provide a model as
an argument to the SimpleForm view helper. SimpleForm will give the form
a name that matches the model name. And SimpleForm will automatically
generate a destination URL for the form based on the model name.

More significantly, SimpleForm will add sophisticated error handling to
the form. If a visitor doesn’t enter a name or submits an invalid email
address, and we declare in our model that we require validation,
SimpleForm will highlight the invalid field and display an inline
message indicating the problem. Compared to what we’ve implemented so
far, this kind of error handling provides a vastly superior user
experience. Instead of displaying a message that the application failed,
the form will be redisplayed with the problem marked and noted.

Now that we’ve seen the advantages of the “Rails way,” let’s
re-implement our contact form using the model-view-controller
architecture.

19.11 Model

When we build database-backed applications with Rails, we base our
models on a parent class named ActiveRecord. We are not using a database
for our tutorial application, so we’ll mix in behavior from ActiveModel,
which adds validation and error handling to our model. Let’s set up a
model that doesn’t require a database.

Create a file app/models/contact.rb:

class Contact
 include ActiveModel::Model
 attr_accessor :name, :email, :content

 validates_presence_of :name
 validates_presence_of :email
 validates_presence_of :content
 validates_format_of :email,
 with: /\A[-a-z0-9_+\.]+\@([-a-z0-9]+\.)+[a-z0-9]{2,4}\z/i
 validates_length_of :content, :maximum => 500

end

When you copy this, be careful to keep the long regex expression
(with: /.../i) on one line (no line breaks).

We give the model the name “Contact.”

We mix in behavior from the ActiveModel class using
include ActiveModel::Model.

We create attributes (data fields) for the model by using the
attr_accessor keyword. The attributes match the fields in the contact form. If we were using a database for our tutorial application, we would not need to
use attr_accessor because ActiveRecord would create access methods
for reading and writing attributes directly from the database.

ActiveModel gives us validation methods named validates_presence_of,
validates_format_of, and validates_length_of. We check that name,
email, and content exist (no blanks are allowed). We provide a
complex regex, or regular expression, to test if the email address
is valid. Finally, we declare that the message content cannot exceed 500
characters.

The model is elegant. We describe the fields we need and state our
validation requirements. ActiveModel does all the rest.

Next we’ll add a new Contact page by creating a view in the
app/views/contacts/ folder.

The new contact form will use our new model.

19.12 Create a New Contact Page

First, let’s create the app/views/contacts/ folder:

$ mkdir app/views/contacts/

Create a file app/views/contacts/new.html.erb:

<% content_for :title do %>Contact<% end %>
<h3>Contact</h3>
<div class="form">
 <%= form_with(model: @contact) do |form| %>
 <%= form.label :name %>
 <%= form.text_field :name, autofocus: true %>

 <%= form.label :email %>
 <%= form.email_field :email %>

 <%= form.label 'message' %>
 <%= form.text_area :content, size: '40x5' %>

 <%= form.submit 'Submit', class: 'submit' %>
 <% end %>
</div>

The form is the same as we used before, but we’re now providing only one
argument, the @contact instance variable, to the form_with view
helper. That’s enough to generate the form name and destination URL.

We haven’t yet created a controller that assigns the Contact model to
the @contact instance variable. We’ll do that soon.

The form helper uses the @contact instance variable to name the form, set a
destination for the form data, and initialize each field in the form
using attributes from the Contact model. Setting the values for the form
fields from the attributes in the model is called “binding the form to
the object” and you can read about it in the RailsGuides: Form
Helpers
article.

We’ve added the error_notification method which provides all the error
handling. The method call is very simple but the results will be
impressive.

We’ll need a controller and routing to complete our
model-view-controller architecture. But first, we’ll detour to learn
about seven standard controller actions.

19.13 Seven Controller Actions

Consider all the possibilities for managing a list. It’s a list of
anything: users, inventory, thingamajigs. We use a web application to
manage the list, so we’ll fill out a form to record each item in our
list.

The web application offers seven features to help us manage our records:

	index - display a list of all items

	show - display a record of one item

	new - display an empty form

	create - save a record of a new item

	edit - display a record for editing

	update - save an edited record

	destroy - delete a record

You can manage any list using these seven actions. There are a few extra
actions that are helpful, such as:

	pagination - displaying a portion of a list

	sorting - displaying the list in a different order

	bulk edit - changing multiple items at once

But seven basic actions are all you need for managing any list of items.

The “Rails way” is about taking advantage of structure and convention to
leverage the power of the framework.

The ApplicationController contains code to implement each of the seven
standard actions. When we create a controller that inherits from the
ApplicationController, we get these standard actions “for free.” That’s
why our new method in our VisitorsController was so simple. The
controller knew to render a view file named new.html.erb from the
views/visitors/ folder because of behavior inherited from the
ApplicationController.

Just like the Rails directory structure provides consistency to make it
easy for any Rails developer to collaborate with other Rails developers,
relying on the seven standard controller actions makes it easy for other
team members to understand how your controllers work.

A controller that uses these actions is said to be “RESTful” (a term
that refers to representational state
transfer,
a software design abstraction). Experienced Rails developers follow the
“Rails way” and try to use RESTful controller methods when possible.

When necessary, you will add other controller actions. For example,
imagine you’ve built a subscription website. When a user’s subscription
ends, you may not want to destroy the subscriber record. Instead you
might add a controller expire or suspend action that marks the
subscriber record as expired so you can continue to access the
subscriber’s contact information for customer service or renewal offers. To the extent you can, use the seven standard controller actions and be
cautious about adding more.

Earlier, I said our ContactsController process_form method isn’t
suitable for the “Rails way.” With our model-view-controller
architecture, we can piggyback on the ApplicationController to display
our empty contact form and process the form when it is submitted.

We’ll use only two of the seven standard controller actions:

	new - display the empty contact form

	create - validate and process the submitted form

Our ContactsController will know to render a view from the
app/views/contacts/new.html.erb file when we call the controller
new method.

We won’t piggyback on behavior from the ApplicationController create
method. But we’ll implement a create method because, by convention,
the form will submit the data to the controller’s create method. SimpleForm will create a destination URL that corresponds to the
ContactsController#create action.

19.14 Controller

Replace the contents of the file
app/controllers/contacts_controller.rb:

class ContactsController < ApplicationController

 def new
 @contact = Contact.new
 end

 def create
 @contact = Contact.new(secure_params)
 if @contact.valid?
 # TODO send message
 flash[:notice] = "Message sent from #{@contact.name}."
 redirect_to root_path
 else
 render :new
 end
 end

 private

 def secure_params
 params.require(:contact).permit(:name, :email, :content)
 end

end

We’ve dropped the “old school” process_form method and added the
“Rails way” new and create methods.

The controller new action will instantiate an empty Contact model,
assign it to the @contact instance variable, and render the
app/views/contacts/new.html.erb view. We’ve already created the view
file containing the form.

SimpleForm will set a destination URL that corresponds to the
ContactsController#create action. The create method will instantiate
a new Contact model using the data from the form (we take steps to avoid
security vulnerabilities first—more on that later).

The ActiveModel class provides a method valid? which we can call on
the Contact model. Our conditional statement if @contact.valid? checks
each of the validation requirements we’ve set in the model.

If all the Contact fields are valid, we can send a message (which we’ll add later),
prepare a flash message, and redirect to the home page. Notice that we don’t need to dig into the params hash for the
visitor’s name; it is now available as @contact.name directly from the
model.

If any validation fails, the controller create action will render the
app/views/contacts/new.html.erb view. This time, appropriate error
messages are set and the form object’s error_notification method will
highlight the invalid field and display a matching prompt.

You’re looking at the tightly bound interaction of the “Rails way”
model, view, and controller.

The only element we are missing is routing. But first, let’s look closer
at the steps we take to avoid security exploits.

19.14.1 Mass-Assignment Vulnerabilities

Rails protects us from a class of security exploits called
“mass-assignment vulnerabilities.” Rails won’t let us initialize a model
with just any parameters submitted on a form. Suppose we were creating a
new user and one of the user attributes was a flag allowing
administrator access. A malicious hacker could create a fake form that
provides a user name and sets the administrator status to “true.” Rails
forces us to “white list” each of the parameters used to initialize the
model.

We create a method named secure_params to screen the parameters sent
from the browser. The params hash contains two useful methods we use
for our screening:

	require(:contact) - makes sure that params[:contact] is present

	permit(:name, :email, :content) - our “white list”

With this code, we make sure that params[:contact] only contains
:name, :email, :content. If other parameters are present, they are
stripped out. Rails will raise an error if a controller attempts to pass
params to a model method without explicitly permitting attributes via
permit.

In older versions of Rails (before Rails 4.0), the mass-assignment
exploit was blocked by using a “white list” of acceptable parameters
with the attr_accessible keyword in a model. You’ll see this code in
examples and tutorials that were written before Rails 4.0 introduced
“strong parameters” in the controller.

19.14.2 Private Methods

If you paid close attention to the code you added to the Contacts
controller, you may have noticed the keyword private above the
secure_params method definition. This is a bit of software
architecture that limits access to the secure_params method (plus any
more methods we might add beneath it).

Very simply, adding the private keyword restricts access to the
secure_params method so only methods in the same class can use it. You
might be puzzled; after all, how else could it be accessed? We haven’t
explored calling methods from other classes, so I’ll just say that
without the private keyword, the secure_params method could be used
from code anywhere in our application. In this case, we apply the
private keyword because we want to be sure the secure_params method
is only used in the ContactsController class. It’s just a bit of “best
practice” and for now, you can simply learn that secure_params method
should be a private method.

Now let’s look at routing for controllers that are built the “Rails
way.”

19.15 Routing

Rails routing is aware of the seven standard controller actions.

In fact, it takes only one keyword (with one parameter) to generate
seven different routes for any controller.

The keyword is resources and supplying a name that matches a model and
controller provides all seven routes.

Open the file config/routes.rb. Replace the contents with this:

Rails.application.routes.draw do
 resources :contacts, only: [:new, :create]
 root to: 'visitors#new'
end

Here we’ve added resources :contacts, only: [:new, :create].

We only want two routes so we’ve added the restriction
only: [:new, :create].

The new route has these properties:

	new_contact_path - route helper

	contacts - name of the controller (ContactsController)

	new - controller action

	http://localhost:3000/contacts/new - URL generated by the route helper

	GET - HTTP method to display a page

The create route has these properties:

	contacts_path - route helper

	contacts - name of the controller (ContactsController)

	create - controller action

	http://localhost:3000/contacts - URL generated by the route helper

	POST - HTTP method to submit form data

You can run the rails routes command to see these in the console:

$ rails routes
 Prefix Verb URI Pattern Controller#Action
 contacts POST /contacts(.:format) contacts#create
new_contact GET /contacts/new(.:format) contacts#new
 root GET / visitors#new
 page GET /pages/*id high_voltage/pages#show

The output of the rails
routes command shows we’ve created the routes
we need.

Our new route new_contact_path can now be used. We’ve completed our
move to the model-view-controller architecture by adding the appropriate
routes.

19.16 Change Navigation Links

With our new model-view-controller architecture, we need to change the
navigation links.

Change the file app/views/layouts/_navigation_links.html.erb:

<%# add navigation links to this file %>
<%= link_to 'About', page_path('about') %>
<%= link_to 'Contact', new_contact_path %>

We’re ready to test the model-view-controller implementation of the
Contact feature.

Be sure you’ve removed the file app/views/pages/contact.html.erb, as
it is no longer used.

19.17 Test the Application

If you need to restart the server:

$ rails server

Open a web browser window and navigate to
http://localhost:3000/.

Click the “Contact” link; then fill out and submit the form.

You should see the flash message “Message sent from …” on the home page.

Try submitting the form with a blank name. You’ll see a warning message,
“Please review the problems below.”

Try submitting the form with an invalid email address such as “me@foo”. The form will re-display with a message, “Please review the problems
below,” and next to the email field, “is invalid.”

Combining SimpleForm error handling with ActiveModel validation is
powerful. If validation fails after the form is submitted, the page will
redisplay and SimpleForm will display an appropriate error message.

19.18 Git

Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "contact form"
$ git push

We’ve built a sophisticated Contact form.

 Chapter 20 Send Mail

Email sent from a web application is called transactional
email. As a
website visitor, you’ve probably seen transactional email such as these
messages:

	sign up confirmation email

	response to a password reset request

	acknowledgment of a purchase

	notice of a change to a user profile setting

A web application can send email to a visitor. It can also send messages
to its owner or webmaster. On large active sites, email notices can be
impractical (an admin interface is better) but for our small-volume
tutorial application, it makes sense to email the contact request
directly to the site owner (Foobar Kadigan is retired and enjoys
receiving email).

20.1 User Story

Let’s plan our work with a user story:

Send Contact Message
As the owner of the website
I want to receive email messages with a visitor's name, email address, and some text
In order to communicate with visitors

To implement the user story, let’s create a feature that sends the
contact data as an email message.

20.2 Implementation

Rails makes it easy to send email. The
ActionMailer
gem is part of any Rails installation.

Implementation of email closely follows the model-view-controller
architecture. To implement email, you’ll need:

	model

	view

	mailer

The “mailer” is similar to a controller, combining data attributes from
a model with a view file. Any methods we add to the mailer class can be
called from a controller, triggering delivery of an email message.

The model can be any we’ve already created. In this case, we’ll use the
Contact model, since it gives us access to the visitor’s name, email
address, and message.

We’ll create a mail-specific view file in the
app/views/user_mailer/ folder. Our folder for mail-specific views
will go in the app/views/ directory as a sibling of the
app/views/layouts folder.

The Rails directory structure already gives us a folder app/mailers/
for the mailer class and, not surprisingly, it is a sibling of the
app/controllers/ folder.

We don’t have to create the necessary folders and files manually, as the
rails generate command runs a utility to create what we need.

20.3 Create View Folder and Mailer

Use the rails generate command to create a mailer with a folder for
views:

$ rails generate mailer UserMailer

The name of the mailer isn’t important; we’ll use UserMailer because
it is obvious.

The rails generate command will create a file:

	app/mailers/user_mailer.rb

It also creates test files which we won’t use in this tutorial.

It uses three additional files which are provided by default in a Rails 5 application:

	app/mailers/application_mailer.rb

	app/views/layouts/mailer.html.erb

	app/views/layouts/mailer.text.erb

This implements our model-view-mailer architecture.

20.4 Edit the Mailer

Add a contact_email method to the mailer by editing the file
app/mailers/user_mailer.rb:

class UserMailer < ApplicationMailer
 default from: "do-not-reply@example.com"

 def contact_email(contact)
 @contact = contact
 mail(to: Rails.application.secrets.owner_email, from: @contact.email, :subject => "Website Contact")
 end
end

The UserMailer class inherits behavior from the ApplicationMailer class. We’ll create a method definition that assigns the contact argument to
the instance variable @contact. Like a controller that combines a
model with a view, our mailer class makes the instance variable
available in the view.

The name of the method isn’t important; it can be anything obvious. We’ll use it in the ContactsController to trigger mail delivery.

Like the render method in a web page controller, the ActionMailer
parent class has a mail method that renders the view.

You’ll need to use your email address in the mailer. You should have
already set a configuration variable for your email address in the file
config/secrets.yml. If you haven’t done so, do it now. By inserting
the configuration variable with your email address after to:, your
inbox will receive the message. If Foobar Kadigan was a real person,
we’d supply his email address here.

We need to insert a “from” address in two places. First there is a
default, for all messages that do not set a “from” address. We will use
“do-not-reply@example.com” for the default “from” address. The email is
originating from a web application that does not receive email, so this
indicates the email address should not be used for replies. For emails
going to website visitors, it would be best to provide a default email
address for a customer service representative on the “from” line, so the
recipient can easily reply. We’re not sending email messages to visitors
so we can ignore this nicety.

For our contact_email method, we’ll insert the email address of the
visitor as the “from” address since we are sending a message to the site
owner. This makes it easy for Foobar Kadigan to click “reply” when he is
reading the contact messages in his inbox. You can see our use of the
email attribute from the Contact model in the expression
from: @contact.email.

That’s all we need for mailer class. Next we’ll create a view containing the message.

20.5 Create Mailer View

There are two types of mailer views. One contains plain text, for recipients who don’t like formatted email (some people still read email from the Unix command line). The other type contains HTML markup to provide formatting. It’s good to create a message of both types, though most recipients will benefit from HTML formatting.

The mailer view for formatted email looks very similar to a web page view file. It contains HTML markup plus Ruby expressions embedded in <%= ... %>
delimiters. In the UserMailer class, we’ve assigned the Contact model
to the instance variable @contact so any attributes are available for
use in the message.

Create a file app/views/user_mailer/contact_email.html.erb:

<!DOCTYPE html>
<html>
 <head>
 <meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
 </head>
 <body>
 <h1>Website Contact</h1>
 <p>
 This visitor requested contact:
 </p>
 <p>
 <%= @contact.name %>

 <%= @contact.email %>

 </p>
 <p>
 The visitor said:
 </p>
 <p>
 "<%= @contact.content %>"
 </p>
 </body>
</html>

You can easily imagine how this view would look as a web page. You’ll
soon see it as an email message in your inbox.

For those recipients who like plain text, create a view without HTML
markup.

Create a file app/views/user_mailer/contact_email.text.erb:

You received a message from <%= @contact.name %> with email address <%= @contact.email %>.

The visitor said:

"<%= @contact.content %>"

You’ve created views for the email message.

Now we can integrate our email feature with the ContactsController.

20.6 Modify Controller

We’ll add code to the ContactsController:

UserMailer.contact_email(@contact).deliver_now

Replace the contents of the file
app/controllers/contacts_controller.rb:

class ContactsController < ApplicationController

 def new
 @contact = Contact.new
 end

 def create
 @contact = Contact.new(secure_params)
 if @contact.valid?
 UserMailer.contact_email(@contact).deliver_now
 flash[:notice] = "Message sent from #{@contact.name}."
 redirect_to root_path
 else
 render :new
 end
 end

 private

 def secure_params
 params.require(:contact).permit(:name, :email, :content)
 end

end

The UserMailer class is available to any controller in the
application. We call the contact_email method we’ve created, passing
the @contact instance variable as an argument, which renders the email
message. Finally, the deliver_now method initiates delivery.

For more on sending email from a Rails application, see RailsGuides:
Action Mailer
Basics.

20.7 Test the Application

If your web server is not running, start it:

$ rails server

Open a web browser window and navigate to
http://localhost:3000/.

Click the “Contact” link and try submitting the form.

The email message should be visible in the console.

If you didn’t get an email message in your inbox, make sure you set your
config/environments/development.rb file to perform deliveries as
described in the “Configuration” chapter. Be sure to restart your server
if you change the configuration file.

20.8 Troubleshooting

If you get an error, you can practice troubleshooting. You’ve set up a complex system with many dependencies. It’s great if it works, but there are several opportunities for errors.

The most likely errors are a missing user name or password. We are trying to connect to the SendGrid email service. SendGrid expects your SendGrid user name. Mine is DanielKehoe (it is not my email address). SendGrid also expects a password.

20.8.1 User Name Issues

If you get the error message, “SMTP-AUTH requested but missing user name,” SendGrid is not receiving a user name it recognizes.

Check that the user name is set in your Unix environment variables:

$ echo "$SENDGRID_USERNAME"

You should see your SendGrid user name.

Make sure you’ve used underscores consistently. If your Unix environment variable is SENDGRID_USER_NAME and the config/secrets.yml file contains SENDGRID_USERNAME, you’ll have a problem.

20.8.2 Password Issues

If you get the error message, “SMTP-AUTH requested but missing secret phrase,” SendGrid is not receiving the SendGrid password.

Check that the SendGrid password is set in your Unix environment variables:

$ echo "$SENDGRID_PASSWORD"

You should see the long cryptic string in the console response. Again, make sure you’ve used underscores consistently, and SENDGRID_PASSWORD is used for the Unix environment variable as well as the config/secrets.yml file.

20.8.3 Problems with Environment Variables

First, close and reopen your terminal to make sure your environment reflects any recent changes you’ve made to your shell configuration. Then try echo "$SENDGRID_USERNAME" to see if you get the credentials you set in your .bash_profile or .bashrc files.

If you’ve set up Unix environment variables but echo "$SENDGRID_USERNAME" doesn’t return the correct variable in the console, you may have a problem with the way you’ve set Unix environment variables. Most computers use the bash shell and you can set environment variables in your .bash_profile or .bashrc files. But not every system is alike. If it seems Unix environment variables are not working, you may have to find a colleague who can help you troubleshoot.

If your Unix environment variables are not working, you can hardcode the variables in your config/secrets.yml file:

Replace the following:

development:
 email_provider_username: <%= ENV["SENDGRID_USERNAME"] %>
 email_provider_password: <%= ENV["SENDGRID_PASSWORD"] %>

with:

development:
 email_provider_username: example
 email_provider_password: 's#cr*t'

In a YAML file, you do not need quotes unless your string contains special characters. If your password contains any of these characters you should surround the string with single quotes:

: { } [] & * # ? | - < > = ! % @ \

Remember the security rule: Don’t commit the config/secrets.yml file to Git if it contains any secrets. Test the application and finish your troubleshooting. Then remove the hardcoded values from the config/secrets.yml file before committing to Git.

20.9 Asynchronous Mailing

You may notice a delay in the responsiveness of the Contact form after
adding the email feature. Unfortunately, there’s a performance penalty
with our new feature. Our controller code connects to the SendGrid server
and waits for a response before it renders the home page and displays
the acknowledgment message.

The performance penalty can be avoided by changing the implementation so
that the controller doesn’t wait for a response from the SendGrid server. We call this asynchronous behavior because sending email does not need
to be “in sync” with displaying the acknowledgment. Eliminating a delay
improves the user experience and makes the site feel more responsive. Asynchronous mailing requires a queueing system for
background jobs.

For our tutorial application, and for a typical small business website,
the delay caused by lack of queueing is no big deal. Keep in mind,
though, as you tackle bigger projects in Rails, you will need to
implement a queueing system. Rails includes the Active Job feature for background processing. The Mailing List with Active Job tutorial in the Capstone Rails Tutorials series explains how to use it.

20.10 Git

Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "sending mail"
$ git push

You’ve created a Rails application that handles a form and sends email
to the site owner.

Mail is a practical way to connect with site visitors. Let’s implement a
feature that collects email addresses for mass mailing of a newsletter.

 Chapter 21 Mailing List

Even as other messaging avenues become increasingly popular, such as messaging apps
or Facebook messages, email remains the most practical way to stay
in touch with website visitors. Encouraging a visitor to provide an
email address means offering an invitation to a dialog and a
relationship beyond a single visit.

If you have a legitimate reason to stay in touch, and you’ve motivated
the visitor to leave an email address, you’ll need a mailing list
service. You’ve seen how Rails can send an email message. From what
you’ve seen so far, you can imagine it would not take much code to loop
through a list of email addresses from a database, sending a message to
each. In the early days of the web, it was easy for any system
administrator to write a script for mass mailings. Since there is
negligible cost to sending bulk email, unscrupulous and ignorant
operators sent email to any address they could scrape, borrow, or steal. The resulting flood of spam made checking one’s inbox an icky experience
and destroyed much of the early culture of the Internet. Fortunately,
services such as Gmail arose to filter email. There is now a thick (but
leaky) layer of screening protocols that redirect spam to a junk folder. One reason you won’t use a Rails application to send bulk email is that
a web application server is not the most efficient tool for sending
email. More significantly, there’s a good chance your email won’t go
through or, if it does (and someone complains), you’ll quickly see your
IP address blacklisted. That’s why we use mailing list services to send
bulk email such as newsletters or promotional offers.

Considerable expertise is required to keep email from being filtered as
spam (see MailChimp’s article Email Delivery For IT Professionals. Email service providers increase reliability of delivery. These services
track deliveries and show how well your email is being delivered. You’ll
also get features such as management of “unsubscribe” requests and
templates to design attractive messages.

There are at least a dozen well-established email service providers that
allow a Rails application to programmatically connect to the service
(via an API) to add or remove email addresses. For a list, see the
article Send Email with
Rails. For this
tutorial application, we’ll use
MailChimp because there is no cost to
open an account and you can send up to 12,000 emails/month to list of
2000 or fewer subscribers for free.

Spam is unsolicited email. Don’t ever send spam, whether for yourself, a
client, or an employer. If recipients complain, your IP address and
domain name will be blacklisted. So be very careful to only send to
subscribers who signed up, send what subscribers expect, and be sure to
offer value. If you get complaints, or the unsubscribe rate is high,
stop.

We’ll assume we’ve discussed the rules with Foobar Kadigan and he is
eager to offer a newsletter to his visitors that will be genuinely
appreciated.

21.1 User Story

Let’s plan our work with a user story:

Subscribe to Mailing List
As a visitor to the website
I want to sign up for a mailing list
In order to receive news and announcements

To implement the user story, we’ll add a mailing list feature.

21.2 Implementation

We’ll use the Rails model-view-controller architecture. We’ll need:

	Visitors model

	view for visitors#new

	Visitors controller with new and create methods

	routing for visitors#new and visitors#create

We’ll add a Visitor model that has a data attribute for an email
address. We already have a Visitors controller that renders the home
page using the file in the app/views/visitors/ folder. We’ll replace
the contents of the view file with a nice photo, a marketing message,
and a form.

Our Visitors controller new and create methods will be very similar
to what we created for the Contacts controller. Instead of connecting to
SendGrid to send a message, we’ll call a method to save the visitor’s email
address to a MailChimp mailing list.

21.3 Gibbon Gem

The Gibbon gem is a convenient wrapper
for the MailChimp API. We could connect
to the MailChimp API using other gems that provide low-level plumbing
such as HTTP connections
(httparty) and data parsing
(multi_json), but other
developers have already done the work of wrapping the plumbing in a
higher-level abstraction that easily fits into a Rails application. Amro
Mousa’s Gibbon gem is popular and actively maintained.

In your Gemfile, you’ve already added:

gem 'gibbon'

and previously run $ bundle install.

21.4 Home Page

Earlier we built a home page that provided a simple demonstration of the
Ruby language. We’ll discard it and replace it with a page that you
could adapt for a typical small-business website.

We want a nice photo, space for a marketing message, and the “sign up”
form.

Replace the contents of the file app/views/visitors/new.html.erb:

<% content_for :title do %>Foobar Kadigan<% end %>
<% content_for :description do %>Website of Foobar Kadigan<% end %>
<section>

</section>
<section>
 <div class="column">
 <h3>Stay in touch.</h3>
 </div>
 <div class="column">
 <div class="form-centered">
 <%= form_with(model: @visitor) do |f| %>
 <%= f.email_field :email, placeholder: 'Your email address...', autofocus: true %>

 <%= f.submit 'Sign up for the newsletter', class: 'submit' %>
 <% end %>
 </div>
 </div>
</section>

We include content_for view helpers that pass a title and description
to the application layout.

We add a photo to the page with an tag. We’re taking
a shortcut and using a placeholder photo from the
lorempixel.com service.

The section and <div class="column"> tags apply our CSS grid
to create a row with two columns, one for our marketing
message, and one for the form.

Our marketing message is merely a placeholder. For a real website, you’d
likely craft a stronger call to action than merely “Stay in touch.”

The form is very similar to the form on the Contact page, except we
initialize it with the @visitor instance variable and only need a
field for an email address. We use the :placeholder parameter to
create a hint in the empty input field.

A submit element will contain the text, “Sign up for the newsletter,”
and we apply a CSS class to style the element as a button.

21.4.1 Photo Options

You’re free to modify this page as you wish, as long as you keep the
form intact.

You might wish to modify the placeholder photo. If you don’t like cats,
try
http://lorempixel.com/1170/600/nightlife/1
or any other categories from the
lorempixel.com service. You can change the
size by modifying the dimensions from 1170 (pixel width) by 600 (pixel
height).

You can replace the placeholder photo with your own. Look for the
app/assets/images folder and add an image. Instead of the HTML
 tag, use the Rails image_tag view helper, like this:

<%= image_tag "myphoto.jpg" %>

We’ll need a Visitor model to initialize the form.

21.5 Visitor Model

The Visitor model is almost identical to the Contact model we created
earlier, except there is just one data attribute for the email field.

We’ll also add a subscribe method to add a visitor to a MailChimp
list. We’ll call this method from the controller when we process the
submitted form.

Create a file app/models/visitor.rb:

class Visitor
 include ActiveModel::Model
 attr_accessor :email
 validates_presence_of :email
 validates_format_of :email, with: /\A[-a-z0-9_+\.]+\@([-a-z0-9]+\.)+[a-z0-9]{2,4}\z/i

 def subscribe
 mailchimp = Gibbon::Request.new(api_key: Rails.application.secrets.mailchimp_api_key)
 list_id = Rails.application.secrets.mailchimp_list_id
 result = mailchimp.lists(list_id).members.create(
 body: {
 email_address: self.email,
 status: 'subscribed'
 })
 Rails.logger.info("Subscribed #{self.email} to MailChimp") if result
 end

end

When you copy this, be careful to keep the long regex expression
with: /.../i on one line (no line breaks).

Just as we did for the Contact model, we use
include ActiveModel::Model to mix in behavior from the ActiveModel
class. This is the best way to create a model that does not use a
database. In other applications, where models use a database, you will
create a model class that inherits from ActiveRecord instead.

We create the email attribute using the attr_accessor keyword. We set validation
requirements using validates_presence_of and validates_format_of
keywords.

To subscribe a visitor to a mailing list, you need to provide:

	list_id - identify the MailChimp list

	email_address - address of the visitor

	status - subscribed, pending, or unsubscribed

We specify “subscribed” to immediately add the address without
asking the user for confirmation. We could specify “Pending”
if we wanted to add the address with double-opt-in so the
visitor receives a request to confirm the email address before they
are subscribed.

Our subscribe method does the work of connecting to the MailChimp
server to add the visitor to the mailing list. We instantiate the Gibbon
object which provides all the connectivity, providing the
mailchimp_api_key value, which we’ve set in the config/secrets.yml
file. We assign the Gibbon object to the mailchimp variable (we could
name it anything).

We set the list_id from a configuration variable in the
config/secrets.yml file.

The visitor’s email_address is an attribute of the model we obtain
from self.

We must set the status property to ’subscribed’ to indicate the
visitor should receive mailings.

Finally, if the application successfully adds the new subscriber, we
write a message to the logger. If we get an error when trying to add the
subscriber, Gibbon will raise an exception.

21.6 Visitors Controller

We already have a Visitors controller that contains a simple new
method. We’ll change the new method, add a create method, and
provide a secure_params private method to secure the controller from
mass assignment exploits.

Replace the contents of the file
app/controllers/visitors_controller.rb:

class VisitorsController < ApplicationController

 def new
 @visitor = Visitor.new
 end

 def create
 @visitor = Visitor.new(secure_params)
 if @visitor.valid?
 @visitor.subscribe
 flash[:notice] = "Signed up #{@visitor.email}."
 redirect_to root_path
 else
 render :new
 end
 end

 private

 def secure_params
 params.require(:visitor).permit(:email)
 end

end

Our new method now assigns the Visitor model to an instance variable
instead of the Owner model.

The create method is almost identical to the Contacts controller
create method. We instantiate the Visitor model with scrubbed
parameters from the submitted form.

If the validation check succeeds, we subscribe the visitor to the
MailChimp mailing list with the @visitor.subscribe method. All the
work of connecting to MailChimp happens in the Visitor model.

If the validation check fails, we redisplay the home page (the new
action).

21.7 Clean Up

We no longer use the Owner model, so we can delete the file
app/models/owner.rb:

$ rm app/models/owner.rb

There’s no harm if it remains but it is good practice to remove code
that is no longer used.

21.8 Routing

Our routing is now more complex. In addition to rendering the
visitors#
new view as the application root (the home page), we need to
handle the create action. We can use a “resourceful route” as we did
with the Contacts controller.

Open the file config/routes.rb. Replace the contents with this:

Rails.application.routes.draw do
 resources :contacts, only: [:new, :create]
 resources :visitors, only: [:new, :create]
 root to: 'visitors#new'
end

The root path remains visitors#new. Order is significant in the
config/routes.rb file. As the final designated route, the root path
will only be active if nothing above it matches the route.

We’ve added resources :visitors, only: [:new, :create].

We only want two routes so we’ve added the restriction
only: [:new, :create].

The new route has these properties:

	new_visitor_path - route helper

	visitors - name of the controller (VisitorsController)

	new - controller action

	http://localhost:3000/visitors/new - URL generated by the route helper

	GET - HTTP method to display a page

The create route has these properties:

	visitors_path - route helper

	visitors - name of the controller (VisitorsController)

	create - controller action

	http://localhost:3000/visitors - URL generated by the route helper

	POST - HTTP method to submit form data

You can run the rails routes command to see these in the console:

$ rails routes
 Prefix Verb URI Pattern Controller#Action
 contacts POST /contacts(.:format) contacts#create
new_contact GET /contacts/new(.:format) contacts#new
 visitors POST /visitors(.:format) visitors#create
new_visitor GET /visitors/new(.:format) visitors#new
 root GET / visitors#new
 page GET /pages/*id high_voltage/pages#show

The output of the rails routes command shows we’ve created the routes
we need.

21.9 Test the Application

If you need to start the server:

$ rails server

Open a web browser window and navigate to
http://localhost:3000/.

You’ll see our new home page with the placeholder photo and the “sign
up” form.

Enter your email address and click the “sign up” button. You should see
the page redisplay with an acknowledgment message. Try entering an
invalid email address such as “me@foo@”, or click the submit button
without entering an email address, and you should see an error message.

You’ll have to log in to MailChimp and
check your list of subscribers to see if the new email address was added
successfully.

With MailChimp, you can send a welcome message automatically when the
visitor signs up for the mailing list. Use the welcome message to inform
the visitor that they’ve successfully subscribed to the mailing list and
will receive the next newsletter email.

It’s a bit difficult to find the MailChimp option to create a welcome
message. Strangely, MailChimp considers a welcome message a “form.” Here’s how to find it. On the MailChimp “Lists” page, click the “down
arrow” for a list and click “Signup forms.” Then click “General forms.” On the “Create Forms” page, there is a drop-down list of “Forms &
Response Emails.” The gray box shows “Signup form.” Click the down
arrow. Select the menu item named “Final ‘Welcome’ Email” and you’ll be
able to create a welcome message.

21.10 Git

Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "mailing list"
$ git push

Our tutorial application is feature complete.

Let’s deploy it so we can see it running as a real website.

 Chapter 22 Deploy

You’ve been running the default web server on your local
machine. If you wanted, you could leave your computer running, set up a
managed DNS
service,
and your web application would be accessible to anyone. But even if you
wanted to leave your computer running 24 hours a day, you’re probably
not a security expert, your web server isn’t tuned to handle much traffic, and
your computer is distant from the interconnection hubs where most
websites are hosted. For these reasons, when we move a web application
from development to production, we deploy it to a web hosting
service that provides
a hosting platform on a server located in a strategically-located data
center.

Data centers offer colocation
services, renting
rack-mounted computers with fast Internet connections that can be
configured as web servers. In the early days of the web, deploying a web
application required system
administration
skills to configure and maintain a web server. Today, some developers
like to set up their web servers “from bare metal” using virtual
private servers
from Linode, Slicehost, Rackspace, Amazon EC2, or others. With sufficent
skills and study, they say there is a feeling of satisfaction from doing
it yourself. But not everyone wants to be a system administrator. Most
Rails developers simply use a hosted platform as a
service (PaaS)
provider such as Heroku,
DigitalOcean,
EngineYard,
OpenShift, or Pivotal Cloud
Foundry.

If you’ve previously built web sites, you may already be using a shared web
hosting
service such as GoDaddy or DreamHost. Be skeptical if a shared web hosting service, designed for WordPress
or static websites, claims to support
Rails applications; most do so badly. Shared hosting services offer file
space for static websites on servers that are shared by thousands of
websites. A Rails application requires considerably greater computing
resources and specialized expertise. In contrast, a platform as a
service provider offers a hardware
and software stack optimized for application performance and developer
convenience.

Heroku is the best known and most popular
PaaS provider and we’ll use it to deploy the tutorial application. Using
Heroku or another PaaS provider means you don’t need skills as a system
administrator to manage your web server. Instead, you’ll have experts
maintaining the production environment, tuning system performance, and
keeping the servers running.

22.1 Heroku Costs

It costs nothing to set up a Heroku account and deploy as many
applications as you want. You’ll pay only if you upgrade your hosting to
accommodate a busy website.

Heroku pricing is based on a measure of computing resources the company
calls a “dyno.” Think of a dyno as a virtual server (though it is not). For personal projects, you can run your Rails application on a single dyno
and never incur a charge, as long as it is not active more than 12 hours a day.

A single dyno idles after one hour of inactivity, “going to sleep” until
it receives a new web request. For a personal project, this means your
web application will respond with a few seconds delay if it hasn’t
received a web request in over an hour. After it wakes up, it will
respond quickly to every browser request.

If you want your web application running 24 hours per day and
responding to every request without
delay, Heroku will charge $7 per month for a “hobby” account. You’ll be able to set up a
custom domain, using your own domain name. Heroku offers the option
of adding dynos to handle more traffic for $25 per month;
here’s an article that
compares Heroku costs.

A single dyno can serve thousands of requests per second, but
performance depends greatly on your application. As a default,
Heroku supports Puma, the recommended web server
for Rails 5. Serving a typical Rails application that
takes 100ms on average to process each request, Puma can accommodate
about 50 requests per second per dyno, which is adequate for a personal
project. If traffic surges on your website and exceeds 50 requests per second,
you can scale up with more dynos.

Heroku is ideal for hosting our application:

	no system administration expertise is required

	hosting is free

	performance is excellent

For this tutorial application, we won’t concern ourselves with the
possibility that the website may get a lot of traffic. I’m sure you’ll
join me in offering hearty thanks to Heroku for providing a convenient
service that beginners can use for free.

Let’s deploy!

22.2 Test the Application

Before deploying an application to production, a professional Rails
developer runs integration or acceptance tests. If the developer
follows the discipline of test-driven development, he or she will have
a complete test suite that confirms the application runs as expected. Often the developer uses a continuous integration server which
automatically runs the test suite each time the code is checked into the
GitHub repository.

We haven’t used test-driven development to build this application so no
test suite is available. You’ve tested the application manually at each
stage.

22.3 Preparing for Heroku

You’ll need to prepare your Rails application for deployment to Heroku.

22.3.1 Gemfile

We need to modify the Gemfile for Heroku.

We add a group :production block for a gem that Heroku needs:

	pg - PostgreSQL gem

Heroku doesn’t support the SQLite database; the company provides a
PostgreSQL database. Though we won’t need it for our tutorial
application, we must include the PostgreSQL gem for Heroku. We’ll mark
the sqlite3 gem to be used in
development only.

Open your Gemfile and replace the contents with the following:

Gemfile

source 'https://rubygems.org'
ruby '2.4.1'
gem 'rails', '~> 5.1.2'

Rails defaults
gem 'sqlite3'
gem 'puma', '~> 3.7'
gem 'sass-rails', '~> 5.0'
gem 'uglifier', '>= 1.3.0'
gem 'coffee-rails', '~> 4.2'
gem 'turbolinks', '~> 5'
gem 'jbuilder', '~> 2.5'
group :development, :test do
 gem 'byebug', platforms: [:mri, :mingw, :x64_mingw]
 gem 'capybara', '~> 2.13'
 gem 'selenium-webdriver'
end
group :development do
 gem 'web-console', '>= 3.3.0'
 gem 'listen', '>= 3.0.5', '< 3.2'
 gem 'spring'
 gem 'spring-watcher-listen', '~> 2.0.0'
end

learn-rails
gem 'bootstrap-sass'
gem 'gibbon'
gem 'high_voltage'
gem 'jquery-rails'
group :development do
 gem 'better_errors'
 gem 'rails_layout'
 gem 'sqlite3'
end
group :production do
 gem 'pg'
end

We have to run bundle install because we’ve changed the Gemfile. The
gem we’ve added is only needed in production so we don’t install it
on our local machine. When we deploy, Heroku will read the Gemfile and
install the gem in the production environment. We’ll run
bundle install with the –without production argument so we don’t
install the new gem locally:

$ bundle install --without production

You’ll see:

.
.
.
Gems in the group production were not installed.
Use `bundle show [gemname]` to see where a bundled gem is installed.

Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "gems for Heroku"
$ git push

22.3.2 Asset Pipeline in Production

It is important to understand that assets are compiled by Heroku
at the time of deployment. Rails compiles assets to make our application faster for the user.

The Rails asset pipeline produces single CSS and JavaScript files that combine all the files in the
folders app/assets/javascripts/ and app/assets/stylesheets/. In development
mode, the Rails asset pipeline “live compiles” all CSS
and JavaScript files so any changes are reflected immediately. But compiling assets adds processing overhead. In
production, a web application would be slowed unnecessarily if assets
were compiled for every web request. Consequently, assets are
precompiled by Heroku at the time we deploy our application to production.

When assets are compiled, the Rails asset pipeline will automatically
produce concatenated and minified application.js and
application.css files from files listed in the manifest files
app/assets/javascripts/application.js and
app/assets/stylesheets/application.css.scss. The result will be several files added
to the public/assets/ folder. The filenames will contain a long unique identifier that prevents
caching when you change the application CSS or JavaScript.

You can precompile assets manually with the command rails assets:precompile
but ordinarily it is not necessary. It is a likely indicator that
the asset pipeline is not working or assets are not compiled if CSS styling is missing from your web pages.

If you want to learn more about the asset pipeline, refer to the Rails Guide on the Asset Pipeline or an article from LaunchSchool.

22.3.3 Option to Ban Spiders

Do you want your website to show up in Google search results? If there’s
a link anywhere on the web to your site, within a few days (sometimes
hours) the Googlebot spider will visit your site and add it to the
database for the Google search engine. Most webmasters want their sites
to be found in Google search results. If that’s not what you want, you
may want to modify the file public/robots.txt to prevent indexing by
search engines.

Only change this file if you want to prevent your website from appearing
in search engine listings:

See http://www.robotstxt.org/robotstxt.html for documentation
#
To ban all spiders from the entire site uncomment the next two lines:
User-agent: *
Disallow: /

To block all search engine spiders, remove the commenting from the
User-Agent and Disallow lines.

You can learn more about the format of the robots exclusion
standard.

22.3.4 Humans.txt

Many websites include a robots.txt file for nosy bots so it’s only
fair that you offer a humans.txt file for nosy people. Few people
will look for it but you can add a file public/humans.txt to credit
and identify the creators and software behind the website. The HTML5
Boilerplate project offers an example
file or you can borrow from
RailsApps.

22.4 Sign Up for a Heroku Account

In the chapter, “Accounts You May Need,” I suggested you sign up for a
Heroku account.

To deploy an app to Heroku, you must have a Heroku account. Visit
https://id.heroku.com/signup/devcenter
to set up an account.

Be sure to use the same email address you used to configure Git locally. You can check the email address you used for Git with:

$ git config --get user.email

22.5 Heroku Toolbelt

Heroku provides a command line utility for creating and managing Heroku
apps.

Visit https://toolbelt.heroku.com/ to
install the Heroku Toolbelt. A one-click installer is available for Mac
OS X, Windows, and Linux.

The installation process will install the Heroku command line utility. It also installs the
Foreman
gem which is useful for duplicating the Heroku production environment on
a local machine. The installation process will also make sure Git is
installed.

To make sure the Heroku command line utility is installed, try:

$ heroku version
heroku-toolbelt/...

You’ll see the heroku-toolbelt version number.

You should be able to login using the email address and password you
used when creating your Heroku account:

$ heroku login
Enter your Heroku credentials.
Email: adam@example.com
Password:
Could not find an existing public key.
Would you like to generate one? [Yn]
Generating new SSH public key.
Uploading ssh public key /Users/adam/.ssh/id_rsa.pub

The Heroku command line utility will create SSH keys if necessary to
guarantee a secure connection to Heroku.

22.6 Heroku Create

Be sure you are in your application root directory and you’ve committed
the tutorial application to your Git repository.

Use the Heroku create command to create and name your application.

$ heroku create myapp

Replace myapp with something unique. Heroku demands a unique name for
every hosted application. If it is not unique, you’ll see an error,
“name is already taken.” Chances are, “learn-rails” is already taken.

The name must start with a letter and can only contain lowercase letters, numbers, and dashes.

If you don’t specify your app name (myapp in the example above),
Heroku will supply a placeholder name. You can easily change Heroku’s
placeholder name to a name of your choice with the heroku apps:rename
command (see Renaming Apps from the CLI).

Don’t worry too much about getting the “perfect name” for your Heroku
app. The name of your Heroku app won’t matter if you plan to set up your
Heroku app to use your own domain name. You’ll just use the name for
access to the instance of your app running on the Heroku servers; if you
have a custom domain name, you’ll set up DNS (domain name service) to
point your domain name to the app running on Heroku.

The heroku create command sets your Heroku application as a Git remote
repository. That means you’ll use the git push command to deploy your
application to Heroku.

22.7 Enable Email

You’ll need to enable email for production or else you’ll get errors
when your application tries to send email from Heroku.

To use SendGrid, add the following to your config/environments/production.rb file:

email enabled in production
config.action_mailer.smtp_settings = {
 address: "smtp.sendgrid.net",
 port: 587,
 domain: Rails.application.secrets.domain_name,
 authentication: "plain",
 enable_starttls_auto: true,
 user_name: Rails.application.secrets.email_provider_username,
 password: Rails.application.secrets.email_provider_password
}
ActionMailer Config
config.action_mailer.default_url_options = { :host => Rails.application.secrets.domain_name }
config.action_mailer.delivery_method = :smtp
config.action_mailer.perform_deliveries = true
config.action_mailer.raise_delivery_errors = false

You can use port 25, 587, or 2525 (some ISPs restrict connections on port 25).

Be sure to add the new settings before the end keyword in the file. The settings can be added anywhere, as long as they precede the end
keyword!

You’ll need to specify the unique name you’ve selected for your hosted
application. We’re using the Rails.application.secrets.domain_name
configuration variable in two places in the file. The
config/secrets.yml file provides configuration variables for use in
production.

Be sure to commit your code to the Git local repository:

$ git add -A
$ git commit -m "email set for Heroku"
$ git push

Next we’ll set Heroku environment variables.

22.8 Set Heroku Environment Variables

When you run your application, configuration
values are obtained from the config/secrets.yml file, which contains
Unix environment variables which are set in the .bash_profile or .bashrc files.

Heroku doesn’t have a .bash_profile or .bashrc file, so you’ll need a way to set environment
variables on Heroku. You can use the heroku config:add command.

$ heroku config:add SENDGRID_USERNAME='example'
$ heroku config:add SENDGRID_PASSWORD='secret'
$ heroku config:add MAILCHIMP_API_KEY='my-key'
$ heroku config:add MAILCHIMP_LIST_ID='mylistid'
$ heroku config:add OWNER_EMAIL='me@example.com'
$ heroku config:add DOMAIN_NAME='myapp.herokuapp.com'

Don’t use the values shown above. Instead, look in your
.bash_profile or .bashrc files and copy the values you find there.

When you set myapp.herokuapp.com, replace myapp with the name that
Heroku is using for your application. If you want to use a custom domain
name, you’ll need to set up DNS (domain name service), which we won’t
cover in this tutorial.

You don’t need to set SECRET_KEY_BASE, even though it is in your
config/secrets.yml file. Heroku sets it automatically.

Check that the environment variables are set with:

$ heroku config

See the Heroku documentation on Configuration and Config
Vars and the article
Rails Environment
Variables
for more information.

22.9 Push to Heroku

After all this preparation, you can finally push your application to
Heroku.

Be sure to commit any recent changes to the Git local repository before
you push to Heroku.

You commit your code to Heroku just like you push your code to GitHub.

Here’s how to push to Heroku:

$ git push heroku master

You may see a message, “The authenticity of host ‘heroku.com’ can’t be
established. Are you sure you want to continue connecting (yes/no)?”. You can answer “yes” and safely continue.

The push to Heroku takes several minutes. You’ll see a sequence of
diagnostic messages in the console, beginning with:

Counting objects...

and finishing with:

remote: Verifying deploy.... done.

22.10 Updating the Application

It is likely you’ll make changes to your application after deploying to
Heroku.

Each time you update your site and push the changes to GitHub, you’ll
also have to push the new version to Heroku. A typical
update scenario looks like this:

$ git add -A
$ git commit -m "revised application"
$ git push
$ git push heroku master

22.11 Visit Your Site

Your application will be running at
http://my-app-name.herokuapp.com/. You can open any web browser and visit the site. For a shortcut, you can
open your default web browser and visit your site from the command line:

$ heroku open

If you’re using hosted development such as Cloud9, you’ll need to open a
browser manually to visit the site.

If you’ve configured everything correctly, you should be able to sign up
for the newsletter and send a contact request.

22.12 Customizing

For a real application, you’ll likely want to use your own domain name
for your app.

See Heroku’s article about custom
domains for
instructions.

You may also want to improve website responsiveness by adding page
caching with a content delivery network such as
CloudFlare. CloudFlare can also provide an SSL
connection for secure connections between the browser and server.

Heroku offers many add-on services. These
are particularly noteworthy:

	Adept Scale - automated scaling of Heroku dynos

	New Relic - performance monitoring

For an in-depth look at your options, see the Rails Heroku
Tutorial.

22.13 Troubleshooting

When you get errors, troubleshoot by reviewing the log files:

$ heroku logs

If necessary, use the Unix tail flag to monitor your log files. Open a
new terminal window and enter:

$ heroku logs -t

to watch the server logs in real time.

22.14 Where to Get Help

Your best source for help with Heroku is Stack
Overflow. Use the tag
“heroku,” “learn-ruby-on-rails,” or “railsapps” when you post your
question. Your issue may have been encountered and addressed by others.

You can also check the Heroku Dev Center
or the Heroku Google Group.

 Chapter 23 Analytics

In earlier chapters, we built the tutorial application and deployed it
for hosting on Heroku.

We’ve left something out. Though not obvious, it’s very important:
analytics.

Analytics services provide reports about website traffic and usage.

You’ll use the data to increase visits and improve your site. Analytics
close the communication loop with your users; your website puts out a
message and analytics reports show how visitors respond.

Google Analytics is the best known tracking service. It is free, easy to
use, and familiar to most web developers. In this chapter we’ll
integrate Google Analytics with the tutorial application.

There are several ways to install Google Analytics for Rails. The
article on Analytics for Rails looks at
various approaches and explains how Google Analytics works.

For this tutorial, we’ll use the Segment.com
service. The service provides an API to send analytics data to dozens of
different services, including Google Analytics.

23.1 Segment.com

Segment.com is a subscription service that gathers
analytics data from your application and sends it to dozens of different
services, including Google Analytics. The service is free for low-volume
websites, accommodating 1000 tracked users per month at no cost. There is no charge to sign up for the service.

Using Segment.com means you install one JavaScript library and get access
to reports from dozens of analytics services. You can
see a list of supported services. The company
offers helpful advice about which analytics tools to choose from. For low-volume sites, many of the
analytics services are free, so Segment.com makes it easy to experiment
and learn about the available analytics tools. The service is fast and
reliable, so there’s no downside to trying it.

23.2 Accounts You Will Need

You will need an account with Segment.com. Sign up for
Segment.com.

You will need accounts with each of the services that you’ll use via
Segment.com.

You’ll likely want to start with Google Analytics, so you’ll need a
Google Analytics account and tracking ID.

Visit the Google Analytics website
to obtain the Tracking ID for your website. You’ll need to know the
domain name of your website to get an account for your website. If
you’ve deployed to Heroku without a custom domain, use the domain that
looks like “myapp.herokuapp.com”. Or use your custom domain if you have
one. Use it for fields for “Website Name,” “Web Site URL,” and “Account
Name.”

Choose the defaults when you create your Google Analytics account and
click “Get Tracking ID.” Your tracking ID will look like this:
UA-XXXXXXX-XX. You won’t need the tracking code snippet as we will use
the Segment.com JavaScript snippet instead.

You’ll check your Google Analytics account later to verify that Google
is collecting data.

23.3 Installing the JavaScript Library

Segment.com provides a JavaScript snippet that sets an API token to
identify your account and installs a library named analytics.js. This is similar to how Google Analytics works. The Segment.com library
loads asynchronously, so it won’t affect page load speed.

The Segment.com JavaScript snippet should be loaded on every page and it
can be included as an application-wide asset using the Rails asset
pipeline.

We’ll add the Segment.com JavaScript snippet to a file named
app/assets/javascripts/segment.js. The manifest directive
//= require_tree . in the file
app/assets/javascripts/application.js will ensure that the new file
is included in the concatenated application JavaScript file. If you’ve
removed the //= require_tree . directive, you’ll have to add a
directive to include the app/assets/javascripts/segment.js file.

Create a file app/assets/javascripts/segment.js and include the
following:

(function(){

 // Create a queue, but don't obliterate an existing one!
 var analytics = window.analytics = window.analytics || [];

 // If the real analytics.js is already on the page return.
 if (analytics.initialize) return;

 // If the snippet was invoked already show an error.
 if (analytics.invoked) {
 if (window.console && console.error) {
 console.error('Segment snippet included twice.');
 }
 return;
 }

 // Invoked flag, to make sure the snippet
 // is never invoked twice.
 analytics.invoked = true;

 // A list of the methods in Analytics.js to stub.
 analytics.methods = [
 'trackSubmit',
 'trackClick',
 'trackLink',
 'trackForm',
 'pageview',
 'identify',
 'reset',
 'group',
 'track',
 'ready',
 'alias',
 'debug',
 'page',
 'once',
 'off',
 'on'
];

 // Define a factory to create stubs. These are placeholders
 // for methods in Analytics.js so that you never have to wait
 // for it to load to actually record data. The `method` is
 // stored as the first argument, so we can replay the data.
 analytics.factory = function(method){
 return function(){
 var args = Array.prototype.slice.call(arguments);
 args.unshift(method);
 analytics.push(args);
 return analytics;
 };
 };

 // For each of our methods, generate a queueing stub.
 for (var i = 0; i < analytics.methods.length; i++) {
 var key = analytics.methods[i];
 analytics[key] = analytics.factory(key);
 }

 // Define a method to load Analytics.js from our CDN,
 // and that will be sure to only ever load it once.
 analytics.load = function(key){
 // Create an async script element based on your key.
 var script = document.createElement('script');
 script.type = 'text/javascript';
 script.async = true;
 script.src = ('https:' === document.location.protocol
 ? 'https://' : 'http://')
 + 'cdn.segment.com/analytics.js/v1/'
 + key + '/analytics.min.js';

 // Insert our script next to the first script element.
 var first = document.getElementsByTagName('script')[0];
 first.parentNode.insertBefore(script, first);
 };

 // Add a version to keep track of what's in the wild.
 analytics.SNIPPET_VERSION = '4.0.0';

 // Load Analytics.js with your key, which will automatically
 // load the tools you've enabled for your account. Boosh!
 analytics.load("YOUR_WRITE_KEY");

})();

You can get the newest version of the code from the
Segment.com Quickstart page. If you copy a newer version of the code, remove the
<script type="text/javascript"> and </script> tags from the top and bottom. The Rails
asset pipeline will add the code to the application.js file which already contains the
necessary <script> tags.

If you copy the code from the Segment.com Quickstart instructions, also remove:

 // Make the first page call to load the integrations. If
 // you'd like to manually name or tag the page, edit or
 // move this call however you'd like.
 analytics.page();

We’ll add analytics.page(); later, wrapping it in additional code to
accommodate Rails Turbolinks.

Note that the Segment.com website offers a minified version of the snippet for
faster page loads. We’ve used the non-minified version so you can read
the code and comments. If you want, you can get minified version from
the Segment.com website for improved speed.

23.4 Replace the Write Key

You must replace YOUR_WRITE_KEY with your Segment.com “Write Key.” After you log in to Segment.com, click on your “workspace,”
then choose a “source,” click “settings,” and click “API Keys” in the side navigation bar. Add the “Write Key” in the file where you see this line:

// Load Analytics.js with your key, which will automatically
// load the tools you've enabled for your account. Boosh!
analytics.load("YOUR_WRITE_KEY");

Now you must add extra code to the Segment.com JavaScript snippet. The extra code accommodates Turbolinks, plus page view and event tracking,
which we’ll look at next.

23.5 Add Integration Code

To make sure every page is tracked when Rails Turbolinks is used, plus track page views and events,
you must add the following JavaScript to the end of the app/assets/javascripts/segment.js file:

// accommodate Turbolinks
// track page views and form submissions
$(document).on('turbolinks:load', function() {
 console.log('page loaded');
 analytics.page();
 analytics.trackForm($('#new_visitor'), 'Signed Up');
 analytics.trackForm($('#new_contact'), 'Contact Request');
})

Add it after the last line. Add it after the orthographic car wreck that looks like })();.

I’ll explain the purpose of this code next.

23.6 Page View Tracking with Turbolinks

To make sure every page is tracked when Rails Turbolinks is used, we’ve added
the following JavaScript to the app/assets/javascripts/segment.js file:

// accommodate Turbolinks
// track page views and form submissions
$(document).on('turbolinks:load', function() {
.
.
.
 analytics.page();
.
.
.
})

Rails 4.0 introduced a feature named
Turbolinks to increase the
perceived speed of a website.

Turbolinks makes an application appear faster by only updating the body
and the title of a page when a link is followed. By not reloading the
full page, Turbolinks reduces browser rendering time and trips to the
server.

With Turbolinks, the user follows a link and sees a new page but
Segment.com or Google Analytics thinks the page hasn’t changed because a
new page has not been loaded. To resolve the issue, you could disable
Turbolinks by removing the turbolinks gem from the Gemfile. However,
it’s nice to have both the speed of Turbolinks and tracking data, so
I’ll show you how to get tracking data with Turbolinks.

Turbolinks fires a load event when a page has been replaced. The code listens for the load event and calls the Segment.com
analytics.page() method. This code will work even on pages that are
not visited through Turbolinks (for example, the first page visited).

23.7 Event Tracking

Segment.com gives us a convenient method to track page views. Page view
tracking gives us data about our website traffic, showing visits to the
site and information about our visitors.

It’s also important to learn about a visitor’s activity on the site. Site usage data helps us improve the site and determine whether we are
meeting our business goals. This requires tracking events as well as
page views.

The Segment.com JavaScript library gives us two methods to track events:

	trackLink

	trackForm

Link tracking can be used to send data to Segment.com whenever a visitor
clicks a link. It is not useful for our tutorial application because we
simply record a new page view when a visitor clicks a link on our site. However, if you add links to external sites and want to track
click-throughs, you could use the trackLink method. The method can
also be used to track clicks that don’t result in a new page view, such
as changing elements on a page.

The trackForm method is more useful for our tutorial application. We’ve already appended it to the app/assets/javascripts/segment.js
file:

// accommodate Turbolinks
// track page views and form submissions
$(document).on('turbolinks:load', function() {
 console.log('page loaded');
 analytics.page();
 analytics.trackForm($('#new_visitor'), 'Signed Up');
 analytics.trackForm($('#new_contact'), 'Contact Request');
})

I’ve included a console.log(’page loaded’) statement so you can check
the browser JavaScript console to see if the code runs as expected.

The trackForm method takes two parameters, the ID attribute of a form
and a name given to the event.

Form tracking will show us how many visitors sign up for the newsletter
or submit the contact request form. Obviously we can count the number of
subscribers in MailChimp or look in the site owner’s inbox to see how
many contact requests we’ve received. But form tracking helps us
directly correlate the data with visitor data. For example, we can
analyze our site usage data and see which traffic sources result in the
most newsletter sign-ups.

You can read more about the Segment.com JavaScript library in the
Segment.com documentation.

23.8 Troubleshooting

Click “Debugger” in the navigation bar so you can monitor data sent to
Segment.com from your application.

When you test the application locally, you should see the results of
page visits and form submissions within seconds in the Segment.com
debugger.

If you don’t see your page visits in the Segment.com debugger, open the
browser JavaScript console, visit a page, and check for the message “page loaded”
in the JavaScript console. In the Chrome browser, the JavaScript console is
available under the item “Developer” in the “View” menu.

23.9 Segment.com Integrations

After installing the Segment.com JavaScript snippet in your application,
go to your “sources” page and click the “integrations” link to
visit the integrations page to select the services that will
receive your data.

Each service requires a different configuration information. At a
minimum, you’ll have to provide an account identifier or API key that
you obtained when you signed up for the service.

For Google Analytics, enter your Google Analytics tracking id. It looks
like UA-XXXXXXX-XX.

With Google Analytics enabled as a Segment.com integration, you’ll see
form submissions appear in the Google Analytics Real-Time report, under
the “Events” heading.

Note that Google doesn’t process their data in real-time in most of its
reports. Data appears immediately in the Google Analytics Real-Time
report. Other Google Analytics reports, such as the Audience report,
won’t show data immediately. Check the next day for updated reports.

23.10 Deploy

Commit to the Git repo and deploy to Heroku:

$ git add -A
$ git commit -m "analytics"
$ git push

Then you can deploy to Heroku:

$ git push heroku master

When you visit the site, you should see real-time tracking of data sent
to Segment.com in the Segment.com debugger.

Log into your Google Analytics account to see real-time tracking of
visits to your website. Under “Standard Reports” see “Real-Time
Overview.” You’ll see data within seconds after visiting any page.

23.11 Improving the User Experience

Website analytics can be used to improve visitors’ experience of the
website. Deploying the website is not the last step in your project. Unlike many earlier forms of communication (such as releasing a film,
publishing a book, or broadcasting an advertisement), we can see how
every visitor responds to the website. That means your work is not done
when you deploy the site. Look at your usage data to see which elements
of the site are getting attention and which are being used.

Does no one visit the “About” page? Maybe the navigation link is
difficult to find. Do many people visit the Contact page but few submit
a contact request form? Maybe you should change the label on the button
or offer other ways to contact the site owner.

Effective and successful websites often are the result of systematic
A/B testing (sometimes
called split testing). A/B testing is a technique of creating
variations on a web page, such as changing text, layout, or button
colors, and using website analytics to measure the effect of the change. You can learn more about services such as Content
Analytics in
Google Analytics, Optimizely, or Visual
Website Optimizer. These services
provide complete “dashboards” to set up usage experiments and measure
results (Optimizely is available as a
Segment.com integration).

23.12 Conversion Tracking

You may only be interested in knowing that people visit your site,
without measuring visitors’ engagement or response to the site. But in
most cases, if you build a website, you’ll offer a way for visitors to
respond, whether it is by purchasing a product, signing up for a
newsletter, or clicking a “like” button.

The ultimate measure of website effectiveness is the conversion
rate. The term comes from
the direct marketing industry and originally referred to a measure of
how people responded to “junk mail” offers. For a website, the
conversion rate indicates the proportion of visitors who respond to a
call to action, which may be an offer to make a purchase, register for
a membership, sign up for a newsletter, or any other activity which
shows the visitor is engaged and interested.

For our tutorial application, we can measure our website effectiveness
by looking at the conversion rate for newsletter sign-ups.

We’re tracking page views which will give us a count of visits to the
website home page. And we’ve got event tracking in place to count
newsletter sign-ups. If 100 people visit the home page and 10 people
request a newsletter, we’ve got a conversion rate of 10%.

We can try to improve the conversion rate by improving the user
experience (perhaps through A/B testing) or focusing on increasing
traffic from sources that provide a higher conversion rate.

You can monitor your site’s conversion rate by setting up events as
goals in
Google Analytics. Segment.com also integrates with many services which
provide conversion tracking.

23.13 Enjoy What You’ve Achieved

You’ve completed building the tutorial application.

If your project was to build an application for someone else, whether
the company you work for, or a client like Foobar Kadigan, you’ve
completed the deliverable.

You started with project planning, in the form of user stories. You
implemented the application using a variety of technologies supported by
the Ruby on Rails development platform. And you’ve deployed the
application for others to use, with analytics in place to track traffic
and usage.

Not every manager or client will appreciate the effort or the complexity
of the project you’ve built. Mr. Kadigan’s happiness may depend on how
well you’ve understood his goals and the degree to which you’ve met his
expectations. If you’re working for yourself, or launching your startup,
you may be your own toughest boss, because there is always more to do.

With technology projects, like many other aspects of life, though it
seems you’ll never get it right, and never get it done, there are
moments when you can savor a sense of accomplishment. This is one of
those moments.

Before you start thinking about adding one more feature, or updating the
application for the new releases that inevitably came out during the
time you were working, take time to bask in the satisfaction of seeing
the results of your work.

Software development has its own unique rhythm of frustration and
satisfaction. As software developers, we subject ourselves to hours,
days, or weeks of struggle with code that is cryptic and resists
understanding. We gain mastery for a few minutes and then turn to the
next problem. With each feature you implement, or issue you resolve,
you’ll experience brief elation before resuming the grind of
development. But at each milestone, and at the completion of the
project, you’ve built something tangible that you can use. You can try
it out yourself and show it to others.

Give yourself full credit. You’ve built something extraordinary with
little more than intelligence and attention. You’ve leveraged the work
of other developers who have contributed to the open source Ruby on
Rails platform and you’ve created your own unique product. This is what
drives us as developers; to create something from nothing, using only
our collective intelligence and ambition.

 Chapter 24 Testing

You don’t need to read this chapter if you will always be a student, or
a hobbyist, working on personal projects. But if you wish to work as a
professional Rails developer, or launch your own startup, with money and
reputation at stake, you must learn about testing. In this chapter, I’ll
introduce the basic concepts of testing and show how to build a test
suite for the tutorial application.

24.1 Why Test?

Software applications are fragile. When you write a song, you can
include a wrong note and the song won’t break. In a film, technical
flaws like a “jump cut” or a microphone in the frame won’t ruin an
entire movie. But an unseen error in a software program can disrupt a
key feature or crash the entire application.

Software applications are never finished. Songs and movies reach a stage
of completion and are delivered to their audience, with no expectation
that the completed work will change. With software applications, there’s
always an upcoming version with bug fixes or new features. As web
developers, we continue to make changes to the applications that our
customers are actively using. Sometimes new features are delivered
within minutes, or hours, of committing new code to the repository.

Software applications are complex. A web application, or any software
program, is a machine with intricately connected parts, or
dependencies. As an application grows, the connections quickly grow
more complex, to the point where no one is able to see all the
dependencies at once. Plus, web applications are often a collaborative
effort, so no one person is familiar with every line of code.

Combine the evolving nature of an application, with the complexity of
the product, and the likelihood that flaws will be immediately noticed
by users, and you’ll realize why testing is so important to the software
development process.

Testing was once considered the sole responsibility of a quality
assurance (QA) department. Senior developers created new features or
fixed bugs. When the work was “done,” lesser paid (and lower status)
developers “in QA” clicked through screens, with written notes or
scripts, as if they were users testing every feature of a program. Invariably, manual testing led to oversights, because testing notes were
out of date, “edge cases” were overlooked, and the work was monotonous. In the best-run companies, QA engineers are now expert consultants on
testing methods and a source of guidance for other developers. We now
rely on automated testing. Even more important, the job of writing
test code now belongs to the developer who creates a feature or fixes a
bug. It’s our responsibility to write adequate tests for any code we add
to the repository.

24.2 What Are Tests?

Developers talk about testing as if it were an activity different from
writing code. It is not. Testing is something we do while writing code. We create tests with the same text editor we use use to write code. The
tests themselves are written in Ruby, just like any other part of a
Rails application. You’ll put the test code in either a tests/ or
spec/ folder, committed to the Git repository with all the other
code. You’ll use the specialized API of a testing framework for the
methods of your tests, either
Minitest or
RSpec. Test code is different from code that
implements features in one significant way: Instead of supporting
interactions with a user, test code interacts with the code you’ve
written, verifying the code behaves as intended.

24.3 Scripted or Exploratory

When testing is used for quality assurance, the goal is to create a
suite of automated tests that will reveal any bugs that creep into code
and break the application. Sometimes this is called scripted testing. These tests are checked into the software repository and maintained with
the application. Often developers will set up a system for continuous
integration (CI), which will automatically run the test suite whenever
the repository is updated. Developers can set up a CI server such as
Jenkins or use a hosted CI service such as
Travis CI, CircleCI,
or Semaphore to run tests automatically. Automated testing with continuous integration serves as a safety net for
developers.

There is another role for testing, which is often called exploratory
testing, or developer testing. These tests may end up in an
application test suite, but the primary purpose is to help a developer
construct an application. Many developers, after gaining experience in
writing tests for quality assurance, realize that writing tests can be a
useful first step in figuring out how a feature should be implemented. It may seem odd to write tests first, but exploratory testing can
clarify what behavior will be required, and help the developer think
through alternatives and edge cases. This approach is called test-first
development, and many developers will tell you that when you write
tests first, you’ll be more satisfied; you’ll be more focused; and
you’ll avoid tangents and detours of the
“nice-to-have-but-not-really-needed” variety. We’ll look closely at
test-first development in conjunction with Test-Driven Development (TDD)
and Behavior-Driven Development (BDD) at the end of this chapter. First,
let’s gain an understanding of testing terminology and practice.

24.4 Regression and Acceptance

We describe tests by the purpose they serve. In addition to exploratory
testing used in test-first development, there are several kinds of tests
used for quality assurance.

Regression tests are run every time we change code. Sometimes we want
to make sure new features don’t break the existing application. More
often, we run tests after changing existing code to make it more
readable, elegant, or effective. We call this tinkering “refactoring.” Refactoring is very similar to what we call editing or rewriting when we
work with the written word. Before we refactor, we need to know what
results we expect from our code, and we need automated tests to execute
our code and check for the expected results. If our automated tests are
adequate, we can use the tests as regression tests, making sure our
refactoring hasn’t introduced new bugs.

Acceptance tests are sometimes identical to regression tests, and may
use the same test code. The purpose is different, so we give this kind
of testing a different name. Acceptance tests provide accountability and
serve a management function. These are tests that determine if a feature
has been implemented as expected. It is common to run acceptance tests
when an outside contractor delivers code, so we can determine if the
team has delivered what we requested. We can also use acceptance tests
to determine if our internal team has implemented the stated
requirements. Proponents of behavior-driven development claim that the
process of creating acceptance tests clarifies the product requirements. Obviously, if we want adequate acceptance tests, we need to plan
carefully when specifying the product requirements. If we’ve planned
well, we can turn our user stories into automated tests that serve as
acceptance tests.

24.5 Units and Integration

We also describe tests by their relationship to the rest of the code.

Unit tests probe the internal workings of the machine. If we’ve
written our code well, a small section of the code, such as a class or a
method, will be a discrete unit that can be tested independently of all
other units. Unit tests inspect the integrity of small parts of the
application in isolation. When a unit test fails, we can quickly
identify and fix broken code.

We use integration tests to make sure the entire application works as
expected. Integration tests mimic the behavior of real users. For a web
application, an integration test may simulate a user signing in, filling
out forms, clicking between pages, and verifying that contents of pages
match expected results. Integration tests can also be called feature
tests if they are designed to confirm that product features work as
expected. Our feature tests can serve as acceptance tests if we use the
test suite to determine if we’ve correctly implemented our user stories
or other product specifications. Sometimes these tests are called black
box tests because the code is tested as if the application was a black
box, with the internal workings of the application hidden from the
observer. They are also called system tests or end-to-end tests.

24.6 Sample Data

When we write tests, either feature tests or unit tests, we often want
to check whether a method returns the data we expect. That means we have
to create the data we need in advance of the test. Either we populate a
database with the data we expect, or we disconnect the database and
instantiate an object that provides the data we expect. Test frameworks
give us a tool named a factory or a fixture to create sample data. Developers argue about what is better, factories or fixtures, but you’ll
encounter factories more often, particularly the popular
FactoryGirl gem. A factory
is an object that creates other objects. When you use FactoryGirl, you
have the option of saving your object to the database (which is slow) or
building your object in memory only (which is faster). Fixtures are used
to populate a database with sample data before your tests run. If you
use fixtures, you’ll save sample data in a configuration file. Before
tests run, Rails automatically loads all fixtures from configuration
files in the test/fixtures folder. As you gain experience with
testing, you’ll become familiar with both factories and fixtures.

24.7 Test Doubles

In unit testing, to isolate small parts of the application, sometimes we
artificially decouple the code from the rest of the application. For
example, with a unit test, we don’t want to connect to an external
service with an API to obtain data. Or we simply want a method to get a
predictable response from another object.

Test doubles stand in for external dependencies. The term is borrowed
from Hollywood, where stunt doubles stand in for actors in action
scenes. A test double is any kind of pretend object used in place of a
real object for testing purposes. There are two types of test doubles,
stubs and mocks. Stubs provide canned answers to calls made during
the test, only responding when queried by the test. Sometimes stubs
record information about the call, for example, the message sent or the
number of times called. Mocks are pre-programmed objects that reproduce
the behavior of the object they represent, forming a specification of an
object’s behavior. It takes time to write stubs and mocks and lots of
experience to use them correctly, so as a beginner, you probably won’t
write stubs and mocks without help. As you can gain experience, you’ll
better understand the difference between stubs and mocks and learn how
to use them. For now, it is enough to recognize the terminology and
remember that tests run faster and better when we reduce coupling and
complexity with test doubles.

24.8 Minitest and RSpec

You’ve already learned that Rails developers mix and match gems to
create a favorite technology stack. Not everyone likes ERB for view
templates. Some prefer Haml or Slim syntax for mixing HTML and Ruby in a
view. Developers often stray from the default Rails stack when it comes
to testing. Since the release of Ruby 1.9,
Minitest has been supplied as a
standard gem with all Ruby installations. Yet most Rails developers use
RSpec for testing.

In this tutorial, I’ll use Minitest to introduce you to testing. Minitest is easier to set up and offers a syntax that is very similar to
RSpec. Some developers say that there is no reason to use RSpec because
Minitest provides almost all the convenience of RSpec with smaller size,
faster speed, and less complexity. Other developers insist that RSpec is
more expressive and flexible. Realistically, if you want a job working
on most Rails teams, you’ll need to learn RSpec. Get started with
Minitest to learn the basics of testing. When you’re ready for the next
step, the Capstone Rails Tutorials will
take you deeper. I also recommend the books Rails 4 Test Prescriptions
by Noel Rappin and Everyday Rails Testing with RSpec
by Aaron Sumner.

24.9 Capybara, the Ghost in the Machine

Unit tests are simple, in principle and often in practice. The tests are
just Ruby code, supplemented with methods from the test framework API.
If we want unit tests for all the methods of a User class, we
instantiate the class and write code that calls each method and verifies
if the response matches our expectations. Using methods from the
Minitest or RSpec test framework, we output a message that indicates
whether each unit test passes or fails.

Integration tests, or feature tests, require more of a framework than
unit tests. We want our tests to be as realistic as possible, as if a
robot was using a web browser and interacting with our web application. Fortunately, the maintainers of the
Capybara gem have created such a
robot. To create integration tests, we add the Capybara gem, using it
with either Minitest or RSpec. Capybara gives us a visit method that
simulates a user visiting a page. After we call the visit method,
Capybara gives us a page object and allows us to test whether the page
contains the content we expect. Every Rails application relies on a
layer of middleware named Rack that ties
into a web server. Capybara interacts with the web application, via
calls to Rack, as if it was a browser making requests and receiving HTML
files as a response.

When we use Capybara, by default it operates in headless mode,
interacting directly with the Rails application via Rack. “Headless”
means there is no graphical user interface (as if the absent screen was
a computer’s head). In headless mode, JavaScript is unavailable. If some
of our application features require JavaScript, we must set up Capybara
to act as a robot using a real web browser. Capybara has a built-in
driver (named
Selenium) that gives
our robot the option of automatically launching and using a real web
browser for each test. By default, Capybara will use the Firefox web
browser if it is installed on your computer. What you’ll see is amazing. When you run tests using Capybara with the JavaScript option, the
Firefox web browser will pop open on your desktop and you’ll watch a
ghost flying through your web application. With Capybara, you now have a
ghostly QA department running your integration tests.

24.10 Four Phases of Feature Tests

Test code is easier to understand when you recognize that tests proceed
in stages, or phases. Code that simulates a user visiting a web page
tends to be organized in four phases:

	set up

	visit page

	verify page contents

	neutralize

The setup phase may include creating a user, signing in, or any other
activity that creates the conditions for a test. With Capybara, the test
visits the page, which requires Capybara to simulate a browser request
to the Rails application. Then, in the third stage, we check if the
server response contains the data we expect. Finally, we may need to
clean up, resetting the original state of the application, or removing
any data the test added to the database.

24.11 Four Phases of Unit Tests

Unit tests also are organized in four stages:

	set up

	exercise

	verify

	teardown

When you test a small part of the application in isolation, you’ll focus
on an object or method which we call the “system under test.” The setup
phase prepares the system under test. Often this means instantiating an
object. Here is an example:

user = User.new(email: 'user@example.com')

During the exercise phase, something is executed. Often this is a method
call:

user.save

During verification, the result of the exercise is verified against the
developer’s expectations:

user.email.must_equal 'user@example.com'

During teardown, the system under test is reset to its initial state. Rails integrates with Minitest or RSpec to reset a database to its
initial state. You will seldom write code for the teardown phase.

Now that you’ve learned about the basic concepts of testing, let’s set
up Minitest for our first tests.

24.12 Set Up Minitest

We’ll set up testing with both Minitest and Capybara, so we can write
both unit tests and feature tests. Minitest is a standard Ruby gem,
installed when you install Ruby in your environment. We’ll install the
minitest-spec-rails
gem which makes it easy to use an RSpec-like syntax with Minitest. We’ll
also add the
minitest-rails-capybara
gem to integrate Capybara with Minitest and Rails.

Open your Gemfile and replace the contents with the following:

Gemfile

source 'https://rubygems.org'
ruby '2.4.1'
gem 'rails', '~> 5.1.2'

Rails defaults
gem 'sqlite3'
gem 'puma', '~> 3.7'
gem 'sass-rails', '~> 5.0'
gem 'uglifier', '>= 1.3.0'
gem 'coffee-rails', '~> 4.2'
gem 'turbolinks', '~> 5'
gem 'jbuilder', '~> 2.5'
group :development, :test do
 gem 'byebug', platforms: [:mri, :mingw, :x64_mingw]
 gem 'capybara', '~> 2.13'
 gem 'selenium-webdriver'
end
group :development do
 gem 'web-console', '>= 3.3.0'
 gem 'listen', '>= 3.0.5', '< 3.2'
 gem 'spring'
 gem 'spring-watcher-listen', '~> 2.0.0'
end

learn-rails
gem 'bootstrap-sass'
gem 'gibbon'
gem 'high_voltage'
gem 'jquery-rails'
group :development do
 gem 'better_errors'
 gem 'rails_layout'
 gem 'sqlite3'
end
group :production do
 gem 'pg'
end
group :test do
 gem 'minitest-spec-rails'
 gem 'minitest-rails-capybara'
end

We’ve added the two gems to the test group. Now, some gems are loaded
only when we’re writing code (during development), some are loaded only
when the application is running on Heroku (deployed to production), and
our newest additions only are loaded when we run tests.

Next, install the additional gems:

$ bundle install

The bundle install command will download and install the gems from the
rubygems.org server.

24.12.1 Run Tests

The command rails test will execute Minitest. Let’s see what happens
when we run tests:

$ rails test
Running via Spring preloader in process 29254
/Users/danielkehoe/workspace/learn-rails/db/schema.rb doesn't exist yet.
Run `rails db:migrate` to create it, then try again. If you do not intend
to use a database, you should instead alter /Users/danielkehoe/workspace/
/learn-rails/config/application.rb to limit the frameworks that will be loaded.
Run options: --seed 35136

Running:
Finished in 0.005570s, 0.0000 runs/s, 0.0000 assertions/s.
0 runs, 0 assertions, 0 failures, 0 errors, 0 skips

Rails Minitest informs us that our application is not set up to use a database. The easiest way to resolve the issue is to run rails db:migrate which sets up the
database schema file. We’re not using a database for this application so the database
schema file will be empty.

$ rails db:migrate

The rails db:migrate command doesn’t produce any result in the terminal but it will create
a new db/schema.rb file.

Try running rails test again:

$ rails test
Running via Spring preloader in process 29468
Run options: --seed 46952

Running:

Finished in 0.005945s, 0.0000 runs/s, 0.0000 assertions/s.
0 runs, 0 assertions, 0 failures, 0 errors, 0 skips

The output shows that Minitest executes but we have no tests for it to
run.

Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "set up minitest"
$ git push

24.13 Unit Test (Standard Syntax)

In its default form, Minitest uses the syntax of the older test_unit
framework that was supplied with Ruby
before version 1.9. The test_unit syntax uses explicit Ruby to set up
tests. Here’s an example of Minitest using the test_unit syntax:

require 'test_helper'

class VisitorTest < ActiveSupport::TestCase

 def valid_params
 { email: 'john@example.com' }
 end

 def test_valid
 visitor = Visitor.new valid_params
 assert visitor.valid?, "Can't create with valid params: #{visitor.errors.messages}"
 end

 def test_invalid_without_email
 params = valid_params.clone
 params.delete :email
 visitor = Visitor.new params
 refute visitor.valid?, "Can't be valid without email"
 assert visitor.errors[:email], "Missing error when without email"
 end

end

Notice that we must declare a class VisitorTest that inherits from
ActiveSupport::TestCase. Then we must define a new method for each
test case using the def keyword. This syntax is not popular with Rails
developers. RSpec offers its own DSL (domain specific language) that
hides the overhead of setting up classes and methods behind convenience
methods. Minitest offers its own version of the the RSpec DSL, allowing
us to use the more popular syntax. I’ll use the new RSpec-like syntax in
this tutorial, since you are likely to encounter RSpec more frequently.

24.14 Unit Test (Spec Syntax)

For our first test, let’s create a simple unit test for our Visitor
model. Every time we run our tests, we want to know that we’re able to
create a Visitor model. We’ll also check that the Visitor model contains
a method that returns an email address.

The default Rails directory structure already contains a
test/models/ folder. Thanks to Rails conventions, we know exactly
where to create our test file.

Create a file test/models/visitor_test.rb:

require 'test_helper'

describe Visitor do

 let(:visitor_params) { {email: 'user@example.com'} }
 let(:visitor) { Visitor.new visitor_params }

 it 'is valid when created with valid parameters' do
 visitor.must_be :valid?
 end

 it 'is invalid without an email' do
 # Delete email before visitor let is called
 visitor_params.delete :email
 visitor.wont_be :valid? # Must not be valid without email
 visitor.errors[:email].must_be :present? # Must have error for missing email
 end

end

The test above, written in the RSpec-like syntax, is functionally
identical to the previous example, written in the old test_unit syntax. Take a close look at both, so the structure and keywords will be
familiar when you see it again.

We need require ’test_helper’ to enable the test framework and apply
any configuration settings.

The keywords describe, let, and it are keywords that are also used
in the RSpec DSL (domain-specific language). When you see these
keywords, you know you are looking at test code, either Minitest or
RSpec.

The purpose of a unit test is to describe the system under test, in
terms of its expected behavior. We create a do ... end block using the
describe keyword and specifying a class we wish to test:

describe Visitor do
 .
 .
 .
end

24.14.1 Create a Test Class With Describe

The describe keyword creates a test class. In this case, the
describe keyword will create a class named VisitorTest that inherits
from ActiveSupport::TestCase. Using the old test_unit syntax, we
could do this with class VisitorTest < ActiveSupport::TestCase but the
describe keyword is more convenient. When Minitest runs, it recognizes
and executes test classes. By including our code inside a test class, we
get to use methods such as let and it which are useful for writing
tests. Minitest will recognize various classes like models or
controllers and provide appropriate behavior.

24.14.2 Setup Phase

We must set up everything we need for the test. Minitest provides a
simple way to set up everything before a test using the before
keyword:

before do
 do_some_setup
end

We could initialize the Visitor model using a before block and setting
instance variables:

before do
 @visitor_params = {email: 'user@example.com'}
 @visitor = Visitor.new(visitor_params)
end

Instead of using a before block, we’ll use the convenient let
keyword:

let(:visitor_params) { {email: 'user@example.com'} }
let(:visitor) { Visitor.new visitor_params }

The let keyword is a specialized version of the before keyword. It
caches the objects that you create so they are ready for every test you
write in the test class. And it is lazy-loaded, which means it does
not require any processing overhead until the first time it is used.

24.14.3 Do It

Each test is defined by the it keyword and a do ... end block that
contains the exercise and verify phases of the test. The it keyword
must be accompanied by a description. The description will be displayed
if the test fails.

For our first test, we want to check if the Visitor model can be created
when we provide a valid email address. Before the test runs, the let
statement makes sure the Visitor object is instantiated with an email
value.

The verification phase of each test consists of a comparison between the
results of an operation and our expectations. We expect that each time
we create a Visitor object with a valid email address, the
visitor.valid? method will return true. We can create a test:

it 'is valid when created with valid parameters' do
 assert_equal visitor.valid?, true
end

The keyword assert_equal is the old test_unit syntax. It compares the
result of visitor.valid? with true and tells Minitest the test has
passed or failed.

We can write the same thing using the new RSpec-style syntax:

it 'is valid when created with valid parameters' do
 visitor.must_be :valid?
end

The method must_be is an expectation. You can see a Minitest
cheat sheet with a list of all
the expectation methods. As you might guess, must_be
functions as a comparison operator, checking if a call to
visitor.valid? returns true.

For our second test, we want to make sure the Visitor object is invalid
when no email address is provided:

it 'is invalid without an email' do
 # Delete email before visitor let is called
 visitor_params.delete :email
 visitor.wont_be :valid? # Must not be valid without email
 visitor.errors[:email].must_be :present? # Must have error for missing email
end

We created the visitor_params hash with a let statement. Before we
invoke the Visitor object and call the visitor.valid? method, we
delete the email address from the visitor_params hash. When the
Visitor object is invoked, it will be created by the let statement
without an email address. The wont_be expectation confirms that the
result of visitor.valid? method is false. Then we check if a
validation error message is present.

At this point, don’t expect to be ready to write unit tests for every
model method. You’ll need to spend time with the documentation for
Minitest
expectations
or the Minitest cheat sheet to
become familiar with all the possible ways to write tests. This
introduction should help you recognize the syntax of tests, understand
the structure, and give you the background you need to learn more about
unit testing.

24.15 Run Tests

Let’s run our unit tests:

$ rails test
Running via Spring preloader in process 29585
Run options: --seed 7800

Running:

..

Finished in 0.020289s, 98.5770 runs/s, 147.8655 assertions/s.

2 runs, 3 assertions, 0 failures, 0 errors, 0 skips

The output shows that our tests pass.

24.15.1 Breaking the Test

Let’s see what happens if we purposefully break our Visitor model. Modify the file app/models/visitor.rb:

class Visitor
 include ActiveModel::Model
 attr_accessor :email
 # validates_presence_of :email
 # validates_format_of :email, with: /\A[-a-z0-9_+\.]+\@([-a-z0-9]+\.)+[a-z0-9]{2,4}\z/i

 def subscribe
 mailchimp = Gibbon::Request.new(api_key: Rails.application.secrets.mailchimp_api_key)
 list_id = Rails.application.secrets.mailchimp_list_id
 result = mailchimp.lists(list_id).members.create(
 body: {
 email_address: self.email,
 status: 'subscribed'
 })
 Rails.logger.info("Subscribed #{self.email} to MailChimp") if result
 end

end

When you copy this, be careful to keep the long regex expression
(/\A…\z/i) on one line (no line breaks).

We’ve commented out the statements that require validation for the email
attribute. Let’s run the tests again:

$ rails test
Running via Spring preloader in process 29655
Run options: --seed 45089

Running:

F

Failure:
Visitor#test_0002_is invalid without an email
[/Users/danielkehoe/workspace//learn-rails/test/models/visitor_test.rb:15]:
Expected #<Visitor:0x007fa5440a2260 @validation_context=nil,
@errors=#<ActiveModel::Errors:0x007fa5440a1f40 @base=#<Visitor:0x007fa5440a2260 ...>,
@messages={}, @details={}>> to not be valid?.

bin/rails test test/models/visitor_test.rb:12

.

Finished in 0.008457s, 236.4993 runs/s, 236.4993 assertions/s.

2 runs, 2 assertions, 1 failures, 0 errors, 0 skips

The output shows a failure. The diagnostic message displays the
description of the failing test, “Visitor#test_0002_is invalid
without an email”, and indicates the line number where the test failed. Now you know what a failing test looks like.

Before you continue, restore the file app/models/visitor.rb to its
original state, and make sure the tests pass.

If you wish, you can continue writing unit tests. You could create a
similar unit test for the Contact model. With more experience, or some
independent research, you could create a test for the subscribe method
in the Visitor model. This method connects to an external API, so it
requires test doubles to fake the response of the external services. Our
goal here is to introduce you to the concepts of testing, so we’ll put
aside advanced work on unit tests, and take a look at feature tests.

24.16 Feature Test

Let’s start with a user story for our home page. It might seem trivial
to call the home page a “feature” and describe it with a user story, but
it illustrates a process that works just as well with more complex
features. Here’s our user story:

Feature: Home page
 As a visitor
 I want to visit a home page
 And see a welcome message

For our test, we know we want to visit the home page and check if the
words “Stay in touch” appear on the page. This is the scenario we’ll
test:

Scenario: Visit the home page
 Given I am a visitor
 When I visit the home page
 Then I see "Stay in touch"

If you think of your application as a collection of features, and you
describe each feature in terms of “As a (role), I want (goal), In order
to (benefit),” and then imagine scenarios for each feature using the
“Given…, When…, Then…” formula, you’ll be able to write automated tests
to cover every feature in the application. Let’s try it for the home
page.

Examine the folders within the test/ directory. Remember that
feature tests are also called integration tests. You’ll see a folder
test/integration/. That’s where we’ll add our feature tests.

Create a file test/integration/home_page_test.rb:

require 'test_helper'

Feature: Home page
As a visitor
I want to visit a home page
So I can learn more about the website
feature 'Home page' do

 # Scenario: Visit the home page
 # Given I am a visitor
 # When I visit the home page
 # Then I see "Welcome"
 scenario 'visit the home page' do
 visit root_path
 page.must_have_content 'Stay in touch'
 end
end

I’ve included the user story and scenario description in comments. There’s no convention to do so, but it will help you to see the
relationship between testing and the product planning process. It should
be easy to transform a “Given… When… Then…” scenario into the code
needed for a feature test.

24.16.1 Feature

When we created a unit test, we used the describe keyword to create a
test class. The feature keyword creates a test class that inherits
from the Capybara::Rails::TestCase class, giving us methods such as
visit and page.

Feature tests are created with a do ... end block using the feature
keyword and providing a description of the feature:

feature 'Home page' do
 .
 .
 .
end

Notice that the description is placed in quotes. In this case, Minitest
will automatically generate a class named HomePageTest.

24.16.2 Scenario

Typically we test a single feature with multiple scenarios in a single
test file.

The scenario keyword is similar to the it keyword you’ve seen in
unit tests. Each feature test is defined by the scenario keyword and a
do ... end block that contains the visit and verify phases of the
test. The scenario keyword must be accompanied by a description. The
description will be displayed if the test fails.

scenario 'visit the home page' do
 visit root_path
 page.must_have_content 'Stay in touch'
end

The directive visit is a Capybara method that takes a URL or Rails
route as an argument. You could specify either visit ’/’ or
visit root_path to direct Capybara to retrieve the home page.

Capybara provides other actions in addition to visit. You can see
the documentation for Capybara
actions
that include actions for filling in a form and clicking a button.

Capybara creates a page object for us as a response to the visit. The
page object is a representation of the HTML file returned by the
application. We can call the must_have_content method, testing if the
string “Stay in touch” is present in the page.

Capybara gives us a collection of methods we can use to verify our
expectations. The documentation for Capybara
expectations
provides an extensive collection of methods we can use to verify what’s
on a web page. For example, must_have_link checks for a link. With
Capybara expectations, you can check almost anything on a page. Combining Capybara actions and expectations allows you to build a
powerful page-checking robot.

24.17 Run Tests

Let’s run all our tests:

$ rails test
Running via Spring preloader in process 30144
Run options: --seed 51858

Running:

...

Finished in 0.459255s, 6.5323 runs/s, 8.7098 assertions/s.

3 runs, 4 assertions, 0 failures, 0 errors, 0 skips

We have three tests (in two test files) making four assertions, all
passing.

24.17.1 Troubleshooting

You might get an error message:

rails aborted!
NoMethodError: undefined method `feature' for main:Object

You’ll see this error message if you neglected to modify the
test/test_helper.rb file to allow use of the Capybara test
framework methods.

24.17.2 Breaking the Test

Let’s see what happens if we purposefully break our home page. Modify
the file app/view/visitors/new.html.erb:

<% content_for :title do %>Foobar Kadigan<% end %>
<% content_for :description do %>Website of Foobar Kadigan<% end %>
<section>

</section>
<section>
 <div class="column">
 <h3>GO AWAY!</h3>
 </div>
 <div class="column">
 <div class="form-centered">
 <%= form_with(model: @visitor) do |f| %>
 <%= f.email_field :email, placeholder: 'Your email address...', autofocus: true %>

 <%= f.submit 'Sign up for the newsletter', class: 'submit' %>
 <% end %>
 </div>
 </div>
</section>

We’ve changed the welcome message from “Stay in touch” to “GO AWAY!”.

Let’s run the tests again:

$ rails test
Running via Spring preloader in process 30059
Run options: --seed 39958

Running:

F

Failure:
Home page Feature Test#test_0001_visit the home page
[/Users/danielkehoe/workspace//learn-rails/test/integration/home_page_test.rb:15]:
Expected to find text "Stay in touch" in "Toggle navigation Home About Contact GO AWAY!".

bin/rails test test/integration/home_page_test.rb:13

..

Finished in 5.124522s, 0.5854 runs/s, 0.7806 assertions/s.

3 runs, 4 assertions, 1 failures, 0 errors, 0 skips

The output shows a failure. The diagnostic message displays the
description of the failing test, “Home page Feature
Test#test_0001_visit the home page”, showing a failure, “Expected to
include ‘Stay in touch’.”

Before you continue, restore the file app/view/visitors/new.html.erb
to its original state, and make sure the tests pass.

Now that we have written a few basic tests, let’s commit our changes
to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "add tests"
$ git push

You’ve written a complete application with tests. Very good!

24.17.3 Using Capybara

There is an art to developing feature tests. You can test that all the
text on the home page is exactly what you want. That would make your
test files large. And your tests would be “brittle,” because any changes
you made in development, even the slightest changes to the words on the
page, would break your tests. For good integration tests, focus on the
features that are essential to your application. For example, use the
Capybara robot to make sure the user can follow a critical path through
your application, visiting important pages, filling in forms, clicking
buttons, and seeing results. Capybara lets you select any HTML element
on a page, so you can check an ID or class attribute of an HTML tag, not
just text on a page. You’ll want to be confident that application
navigation and page flow continues to work after any code changes. That
will serve you better than tests that tell you a word changed here or
there.

24.18 Other Tests

The art of testing lies in making good choices about what to test. It’s
common to write feature tests because they will test the entire
application from the viewpoint of the user. It is also common to write
unit tests for models because models contain much of the uniqueness of
an application.

Every other aspect of a Rails application can be tested, including
controllers, helpers, and views. Developers seldom write tests for every
aspect of a Rails application. If your controllers contain only the
standard RESTful actions, with no extra logic, you probably don’t need
to write unit tests for your controllers. If you only have simple HTML
markup in helpers, helpers don’t need to be tested. And views are rarely
tested with unit tests (use feature tests if you want to make sure a
page contains what you expect). As a beginner, you’ll make a good start
if you concentrate on unit tests for models and integration tests for
your page flow.

24.19 Behavior-Driven Development

In Book One, you learned about the software
development approach called Behavior-Driven Development (BDD), or
sometimes, Behavior-Driven Design. In writing the feature tests for the
home page, you saw it in action. With BDD, you turn user stories into
detailed scenarios that are accompanied by tests. BDD is a powerful
approach for managing software development. It helps you define your
product requirements, refine your project scope, and divide your project
into well-defined tasks. The BDD process is complete when each feature
has automated tests, when you enter rails test on the command line and
see that every feature is implemented and functioning as expected.

You may feel lost or overwhelmed when you attempt to build a Rails
application for the first time, especially if your only experience is
following the step-by-step instructions of a tutorial. When you
experience that panic, BDD is your lifeline. Start by writing user
stories for a few simple features. Write feature tests and implement the
code required to make the tests pass. As you focus on the process of
writing scenarios and tests, and implementing the code for each feature,
you’ll begin to gain momentum, and before you know it, you’ll be over
the first hurdle.

24.20 Test-Driven Development

You can see how the BDD approach refines the product requirements and
user experience. At a microscopic level, a similar discipline, named
test-driven development, helps refine the implementation. Where BDD is
driven by feature tests, TDD is focused on unit tests.

TDD is an approach to software development that emphasizes that all code
should be written to be tested. Excellent test coverage, allowing easy
refactoring, is not the only goal of TDD. Just as important, the
developer focuses on what needs to be accomplished and thinks through
alternatives and edge cases. Some TDD aficionados say testing is a tool
to write better code, and regression tests are a side effect. Unit tests
are at the heart of TDD, and easiest to write when code is carefully
decoupled into systems that can be tested in isolation. An application
that is composed of decoupled units with clearly defined interfaces is a
well-designed application that is easy to extend and maintain. If you
make it a practice to write unit tests in conjunction with all the code
you write, you’ll write better code, and you’ll be practicing TDD.

24.21 Test-First Development

Often when you are practicing TDD, you’ll write tests before you write
implementation code. Earlier in this chapter, I referred to test-first
development and explained that it serves a different purpose than
testing for quality assurance. In some situations, test-first
development is simply exploratory testing, a means of describing the
behavior of the code that must be built. Test-first development is
particularly useful when you’ve solved a similar problem and know
exactly what results to expect, making it easy to write tests before
writing the implementation.

Test-first development leads to a “red-green-refactor” workflow. A
developer imagines the results of an operation, writes a test that
checks for the results, and runs tests which fail (with the right
configuration, failing tests display as red in the console). Then the
developer writes code that produces the correct results and runs the
tests again, improving the code until the tests pass (displaying in
green). At this point, the developer has an adequate regression test and
can begin to refactor to improve the implementation, checking that the
tests continue to pass. Developers like the rhythm and coherency of the
“red-green-refactor” workflow. Writing tests creates discrete,
manageable tasks. When tests pass, turning green, there is a feeling of
satisfaction, of a job well-done. By postponing concerns about improving
the code to a refactoring phase, it’s easier to get the job done without
trying to get it perfect. And perfection can be pursued in the
refactoring phase without worrying about regressing to a broken state.

David Heinemeier Hansson, the creator of Rails, famously declared that
TDD is dead. Long live testing.. He pointed out that sometimes ardent advocates of TDD will try out an
implementation before writing tests, to determine what needs to be done,
or to clarify a problem. In the real world, even though developers
recommend writing tests first, there are often times when a developer
will write tests only after writing code and settling on an approach. TDD, which emphasizes the benefit of writing tests as a first step,
doesn’t really require that you write tests before you write code, or
even that you write tests for all code. The test-first emphasis of TDD
is a recommendation, not a rule. You’ll be a better developer if you
find opportunities to get “in the zone” with the red-green-refactor
workflow of test-first development, but testing is worthwhile whether it
comes first or last.

24.22 Words of Encouragement

Testing often intimidates the newcomer. It is difficult to find good
examples. The syntax of Minitest and RSpec has evolved over time, so
there is little consistency among examples you’ll find. Older examples
are not a good guide to current practices. But once you gain familiarity
with the concepts in this chapter, you can start writing tests.

Testing is one of the few things in Rails that you can jump into without
getting just right. You can’t screw up your code base by writing
incorrect tests. Experienced developers seem to worry that inexperienced
developers will write slow tests, but in truth, a slow test is better
than no test. Tests won’t affect the performance of your application in
production.

If your code is clumsy, don’t worry, you’ll get better with practice. What’s most important is that you’ve begun writing tests. That’s an
indication you are committed to Rails best practices.

Your tests are only “bad” if they don’t cover your code adequately or if
they give you a false sense of assurance. You will only discover this
over time, as you find bugs you didn’t anticipate (which is inevitable). It’s better to just begin testing, even if you’re not sure you’re doing
it right, than to not test at all.

 Chapter 25 Rails Composer

I’m going to show you how to skip all the work you already did, and
build a ready-to-use Rails application in less than five minutes. When
you’re done with this chapter, you may wonder why you read the rest of
the book.

Watch the video for a demonstration of Rails Composer:

	Rails Composer

25.1 Building Starter Applications

This chapter is about Rails Composer, a
tool for building starter applications. Rails Composer makes building
applications so easy, it feels like a guilty pleasure.

In the introductory “Create the Application” chapter, you learned that
developers often use a starter application instead of assembling an
application from scratch. You’ve seen how the rails new command gives
you a rudimentary starter application. Developers typically add a
front-end framework, a testing framework, and a handful of favorite gems
before they get started on any custom development. Since most
applications start with the same basic components, it makes sense to
rely on an open source effort to stitch them together, so any
integration issues or update problems are quickly resolved by the
community. That’s the idea behind the RailsApps
project. The project provides a collection
of starter applications, plus Rails Composer, a tool that creates the
starter applications.

I’ve been leading the RailsApps project for several years because I
think the project saves time for developers and makes things easier. I may be biased, so take a look and judge for yourself.

25.2 Build ‘Learn Rails’ in Less Than Five Minutes

In less than five minutes, we can build our tutorial application using
Rails Composer. It will be identical to the application you’ve built,
but we’ll call it “foobar-kadigan.” It’s a new application, so if you’re
still in the workspace/learn-rails/ project directory, move up a
level to the workspace/ project directory:

$ cd ../
$ pwd
/Users/danielkehoe/workspace

Or jump to it directly, if it’s one level below your home directory:

$ cd ~/workspace
$ pwd
/Users/danielkehoe/workspace

Use the “learn-rails” gemset we created earlier:

$ rvm use ruby-2.4.1@learn-rails

Now create the “foobar-kadigan” application:

$ rails new foobar-kadigan -m https://raw.github.com/RailsApps/rails-composer/master/composer.rb

We’re using the rails new command and designating “foobar-kadigan” as
the name for the application. The -m flag applies an application
template, which is a script that generates an application. The
application template can be on your local computer, or retrieved from a
remote server. Rails Composer is an application template that is stored
on GitHub. When you run the rails new command as shown above, a new
Rails application is built and then modified by the Rails Composer
script.

Here’s the first prompt you’ll see:

option Build a starter application?
 1) Build a RailsApps example application
 2) Contributed applications
 3) Custom application
choose Enter your selection:

Options #2 and #3 are not for beginners. We’ll skip any contributed
applications. And the “Custom application” option is strictly for
experts. Enter 1 to select “Build a RailsApps example
application.” You’ll see a list of available starter applications:

option Choose a starter application.
 1) learn-rails
 2) rails-bootstrap
 3) rails-foundation
 4) rails-mailinglist-activejob
 5) rails-omniauth
 6) rails-devise
 7) rails-devise-roles
 8) rails-devise-pundit
 9) rails-signup-download
 10) rails-stripe-checkout
 11) rails-stripe-coupons
choose Enter your selection:

We’ll explore the list later. For now, enter 1 to select
“learn-rails”.

Here’s your chance to get news and announcements about Rails Composer:

 Get on the mailing list for Rails Composer news?
option Enter your email address:

Enter your email address (if you want news) or press “return” to
skip it (if you’re shy).

In less than the time it took me to
write a few sentences, you’ll have a new Rails application. Look for it in
your folder:

$ ls -1
foobar-kadigan
learn-rails

You’ve just created a new application named “foobar-kadigan” that is
almost identical to the “learn-rails” application you created from
scratch. If you have a file compare tool on your computer, you can
compare the folders and see that the only differences are the
application name embedded in the application, plus a few configuration
settings such as the secret keys in the config/secrets.yml file.

Move into the project directory:

$ cd foobar-kadigan

As soon as you move into the foobar-kadigan/ folder, RVM will
automatically begin using the gemset named “foobar-kadigan.” That’s
because Rails Composer created hidden .ruby-gemset and
.ruby-version files.

Run bundle install to install the necessary gems in the RVM gemset:

$ bundle install

Try running the application.

$ cd foobar-kadigan
$ rails server
=> Booting Puma
.
.
.

Open a web browser window and navigate to
http://localhost:3000/. Try it out. You’ll see
our new home page with the placeholder photo and the “sign up” form.

The application will be almost identical to the one you already built. Compare the project files side-by-side in your editor. The files will be
nearly identical. In fact, if you made mistakes when you built the
tutorial application, Rails Composer will give you the newest and most
correct version of the application so you can check for your mistakes
with a file compare tool.

You are probably already aware that a perfect version of the tutorial
application is already on GitHub, in the learn-rails GitHub
repository. You could use
git clone to get a copy to use as a starter application. The version
generated by Rails Composer differs in one important respect. Rails
Composer generates the application with any name you give it, so there’s
no need to search and change every use of the name in the application.

I hope you’re not irritated that I asked you to spend hours building the
“learn-rails” application, and then showed you how to build the same
application in less than five minutes. I promise you the time you spent
with the book is worthwhile, because you’ve gained a knowledge of Rails
you can’t get from using Rails Composer.

25.3 A Collection of Starter Applications

Since you’ve already built the “learn-rails” application, the identical
“foobar-kadigan” application may not be interesting. Let’s look at the
other applications you can generate with Rails Composer.

25.3.1 Rails Bootstrap

The “rails-bootstrap” application provides an integration of Rails and
Bootstrap, the popular front-end framework. This application gives you everything you built in this book’s chapters on
“Layout and Views” and “Front-End Framework,” including flash messages
and navigation, set up for Bootstrap. It’s a good beginning point for many
custom applications.

You can examine the example application on GitHub, in the
rails-bootstrap
repository.

If you have subscribed for the Capstone Rails Tutorials, you can read the
Bootstrap Quickstart Guide
to understand the code.

25.3.2 Rails Foundation

The “rails-foundation” application is just like the “rails-bootstrap”
application, only with the Zurb Foundation
front-end framework instead
of Bootstrap. It’s a stripped-down version of the “learn-rails”
application you just built, without the contact form or mailing list
sign-up, using Foundation. If you want to build a custom application, starting with
nothing more than Foundation and an “about” page, generate the
“rails-foundation” application.

You can examine the example application on GitHub, in the
rails-foundation
repository.

There’s a Foundation Quickstart Guide
with the Capstone Rails Tutorials.

25.3.3 Rails Mailing List with Active Job

Rails 4.2 added the Active
Job feature for
background processing. The Mailing List with Active
Job
tutorial explains how to use it. You can use Rails Composer to generate the
rails-mailinglist-activejob
starter application.

In the “Send Mail” chapter I wrote about “Asynchronous Mailing” which provides
a queueing system for background jobs. For a production website, it is smart to
use Active Job for better website performance for users. The Mailing List with Active Job tutorial in the
Capstone Rails Tutorials series explains the code.

25.3.4 Rails OmniAuth

OmniAuth is a gem for
authentication. Most web applications need a way for users to sign in,
allowing access to some features of the application only for signed-in
users. OmniAuth allows a user to sign in using an account they already
have with a service such as Facebook, Twitter, or GitHub. If you’re
building an application that needs quick and easy sign-in, this is a
useful starter application.

You can examine the example application on GitHub, in the
rails-omniauth
repository.

You can read the OmniAuth Tutorial
in the Capstone Rails Tutorials series to
learn about authentication with OmniAuth.

25.3.5 Rails Devise

Devise is the most popular
gem for authentication. Devise provides user management and
authentication, letting a user sign up to create an account and log in
with an email address and password. Most websites need email/password
authentication, so this is a popular starter application.

You can examine the example application on GitHub, in the
rails-devise repository.

You can read the Devise Quickstart Guide
in the Capstone Rails Tutorials series to
learn about user management and authentication with Devise.

25.3.6 Rails Devise Roles

Devise is a popular gem for authentication, verifying a
user’s registered identity. In conjunction with authentication,
authorization limits access to pages of a web application. With role-based authorization, a user can be assigned a role such as
“user,” “admin,” or “VIP” (a “very important person”). If you want to
control access to features of the website by checking a user’s role,
this is a useful starter application.

You can examine the example application on GitHub, in the
rails-devise-roles
repository.

You can read the Rails Authorization
Tutorial
in the Capstone Rails Tutorials series to learn about authorization.

25.3.7 Rails Devise Pundit

To keep controllers skinny, Rails developers often use the
Pundit gem for authorization. It
improves upon simple role-based authorization to move access control
code from controllers to separate “policy objects.” For complex
applications with elegant architecture, use the “rails-devise-pundit”
starter application.

You can examine the example application on GitHub, in the
rails-devise-pundit
repository.

You can read the Pundit Quickstart Guide
in the Capstone Rails Tutorials series to
learn about authorization with Pundit.

25.3.8 Other Starter Applications

Other applications in the Rails Composer collection include:

	rails-signup-download

	rails-stripe-checkout

	rails-stripe-coupons

You can use the
rails-signup-download
application to build a website where a user can download a PDF file
after registering with an email address. Using the code in the Signup and Download Tutorial,
you could customize the “learn-rails” application so visitors could
download an ebook by Foobar Kadigan after they sign up for his
newsletter.

Stripe is a popular service used to accept credit
card payments. Stripe offers two approaches to implementing payment
processing. Stripe Checkout is Stripe’s entry-level approach. Stripe
Checkout competes with the button-based payment options from Google,
PayPal, or Amazon, adding a pop-up payment form to any web page. Stripe
Checkout is very limited because the pop-up payment form cannot be
customized for use with a Rails application. Our Stripe Checkout Tutorial
in the Capstone Rails Tutorials series
shows how to combine Stripe Checkout with Devise for simple applications.

Stripe.js is optimal for use with a
Rails application, allowing full customization of a payment form and
integration with Rails form processing. The
rails-stripe-coupons
application implements a payment feature using Stripe JS so a visitor
pays to download a PDF file. The application accommodates promotional
coupons and adds payment forms to landing pages, for real-world payment
processing. Our Stripe JS With Coupons tutorial
in the Capstone Rails Tutorials series provides the details.

25.4 Rails Composer Options

If all Rails Composer did was copy example applications from GitHub
repos, it would be convenient but not very interesting. When you built
the “foobar-kadigan” application with Rails Composer, it simply built a
replica of our tutorial application. When you build the other starter
application, the options get more interesting. Rails Composer lets
developers customize their starter applications for their favorite stack
(we discussed stacks in the “Concepts” chapter in Book One).

Let’s see what options we get when we build the powerful
rails-devise-roles
starter application.

Jump to your workspace/ folder so we can create a new application:

$ cd ~/workspace
$ pwd
/Users/danielkehoe/workspace

It’s okay to start with the “learn-rails” gemset. We have to start with
a gemset that already has the Rails gem installed. After that, Rails
Composer will create a new gemset for the new project.

$ rvm use ruby-2.4.1@learn-rails

Now generate the “rails-devise-roles” starter application:

$ rails new rails-devise-roles -m https://raw.github.com/RailsApps/rails-composer/master/composer.rb

Don’t worry if some of the prompts are different from the ones I
describe here. Rails Composer changes often. At the time I wrote this, I
saw:

option Build a starter application?
 1) Build a RailsApps example application
 2) Contributed applications
 3) Custom application
choose Enter your selection:

Enter 1 to select “Build a RailsApps example application.”

option Choose a starter application.
 1) learn-rails
 2) rails-bootstrap
 3) rails-foundation
 4) rails-mailinglist-activejob
 5) rails-omniauth
 6) rails-devise
 7) rails-devise-roles
 8) rails-devise-pundit
 9) rails-signup-download
 10) rails-stripe-checkout
 11) rails-stripe-coupons
choose Enter your selection:

Select “rails-devise-roles” (it was #7 when I wrote this, but the list
may have changed).

 Get on the mailing list for Rails Composer news?
option Enter your email address:

Another chance to get on the mailing list. Just hit “return” if you
already signed up.

option Web server for development?
 1) Puma (default)
 2) Thin
 3) Unicorn
 4) Phusion Passenger (Apache/Nginx)
 5) Phusion Passenger (Standalone)
choose Enter your selection:

Our first option! We’ve always used Puma since it is the Rails default. Choose “Puma” to keep things familiar.

option Web server for production?
 1) Same as development
 2) Thin
 3) Unicorn
 4) Puma
 5) Phusion Passenger (Apache/Nginx)
 6) Phusion Passenger (Standalone)
choose Enter your selection:

We could get fancy for deployment. Choose “Same as development” to stay in our comfort zone.

option Database used in development?
 1) SQLite
 2) PostgreSQL
 3) MySQL
choose Enter your selection:

We haven’t explored applications that use databases in this book, but
Devise and role-based authorization require saving a User model to a
database. Choose “SQLite,” which is built-in and ready to run in the Mac
or Ubuntu environments. Developers prefer PostgreSQL for production
applications, but it takes extra effort to set up, so we’ll stick with
SQLite for now.

option Template engine?
 1) ERB
 2) Haml
 3) Slim
choose Enter your selection:

In this book, all our view templates were written using the ERB template
language. In the “Concepts” chapter in Book One, you learned that components of
Rails can be mixed for different stacks. Some developers substitute
Haml or Slim for ERB. I’ve
written an article on Haml and
Rails if you’d like to know
more. Choose “ERB” for now.

option Test framework?
 1) None
 2) RSpec with Capybara
choose Enter your selection:

You’ve had an introduction to testing with Minitest in the “Testing”
chapter of this book. RSpec is popular among many
developers, so Rails Composer offers an “RSpec with Capybara” option. Rails Composer will install a test suite for the
rails-devise-roles
application when RSpec is selected. You can read the
RSpec Quickstart Guide
in the Capstone Rails Tutorials series
to get started with RSpec. Choose “none” for now.

option Front-end framework?
 1) None
 2) Bootstrap 4.0
 3) Bootstrap 3.3
 4) Bootstrap 2.3
 5) Zurb Foundation 5.5
 6) Zurb Foundation 4.0
 7) Simple CSS
choose Enter your selection:

You learned to use Bootstrap 3 in this book. Let’s stick with that. Choose “Bootstrap 3.3.”

option Add support for sending email?
 1) None
 2) Gmail
 3) SMTP
 4) SendGrid
 5) Mandrill
choose Enter your selection:

Devise will need to send email for its “forgot password” feature. Configuring email took some time for our tutorial application. Rails
Composer will instantly set up everything we need to send email using
our choice of services. Choose “SendGrid” for now.

option Devise modules?
 1) Devise with default modules
 2) Devise with Confirmable module
 3) Devise with Confirmable and Invitable modules
choose Enter your selection:

Choose “Devise with default modules.” Devise has options, like a
Confirmable module that requires users to click a link in an email
message to confirm a new account. The Invitable module provides a
feature that allows administrators or other users to invite users to
establish accounts. We won’t need these extra features.

option Admin interface for database?
 1) None
 2) Thoughtbot Administrate
choose Enter your selection:

Thoughtbot Administrate adds an
administrative interface to a database application. Choose “None” for
now.

option Use a form builder gem?
 1) None
 2) SimpleForm
choose Enter your selection:

We could add the
SimpleForm gem to make
it easy to build forms. We didn’t use it in this book, so we’ll choose “none.”

Next you’ll see a menu of page layout options from Rails Composer. These are available if you use Bootstrap 3.

option Add Bootstrap page templates?
 1) None
 2) 1 Col Portfolio
 3) 2 Col Portfolio
 4) 3 Col Portfolio
 5) 4 Col Portfolio
 6) Bare
 7) Blog Home
 8) Business Casual
 9) Business Frontpage
 10) Clean Blog
 11) Full Width Pics
 12) Heroic Features
 13) Landing Page
 14) Modern Business
 15) One Page Wonder
 16) Portfolio Item
 17) Round About
 18) Shop Homepage
 19) Shop Item
 20) Simple Sidebar
 21) Small Business
 22) Stylish Portfolio
 23) The Big Picture
 24) Thumbnail Gallery
choose Enter your selection:

You’ll get an option to install any of 23 different Bootstrap page templates. Some of these are simple one page layouts. Others are complex, multipage websites. If you’d like to see what all the templates look like, browse the
Start Bootstrap
website to see the gallery of Bootstrap themes & templates.

I like the “Modern Business” template for several ready-made website pages, so
choose 14 to install the template.

option Install page-view analytics?
 1) None
 2) Google Analytics
 3) Segment.com
choose Enter your selection:

In our “Analytics” chapter, I said every application needs a way to
analyze traffic. Let’s choose “Segment.com” since we learned about it
already.

 option Segment.com Write Key?

You can enter your Segment.com Write Key here, if you know it. Otherwise,
hit return and you’ll get a placeholder you can replace later.

option Prepare for deployment?
 1) no
 2) Heroku
 3) Capistrano
choose Enter your selection:

This option sets up your starter application for deployment to Heroku. Choose “no” for now.

Some developers find Rails Turbolinks annoying when they wish to integrate
JavaScript with their Rails applications.

 option Disable Rails Turbolinks? (y/n)

We’re not adding any JavaScript so choose “n” to use Rails Turbolinks.

 option Set a robots.txt file to ban spiders? (y/n)

In the “Deploy” chapter you learned that you can leave your website out
of Google search results with the robots.txt file. Let’s answer “y”
or “yes” and play it safe.

 option Create a GitHub repository? (y/n)

Rails Composer will create a GitHub repository for your starter
application if your credentials are set up correctly. Let’s play it safe
and answer “n” or “no” to skip the repository option.

Rails Composer has all the answers it needs. On my computer, with a fast
Internet connection in the heart of San Francisco, Rails composer takes
about thirty seconds to build the starter application. It installs every
needed gem; sets configuration files; and generates views, models,
controllers, and routes. The developers who maintain the Rails Composer
project have worked out any tricky integration issues so you can expect
the starter application to work without any problems.

25.5 Try It Out

You’ve added a new application to your collection of projects:

$ ls -1
foobar-kadigan
learn-rails
rails-devise-roles

Let’s examine the application.

$ cd rails-devise-roles
$ git log --oneline
087167a rails_apps_composer: extras
6d4f710 rails_apps_composer: add Bootstrap page layouts
be68589 rails_apps_composer: navigation links
3126403 rails_apps_composer: set up database
53a029f rails_apps_composer: add README files
7c78031 rails_apps_composer: add analytics
99e9c0c rails_apps_composer: add pages
1886d2c rails_apps_composer: front-end framework
38242d7 rails_apps_composer: add roles to a User model
839749f rails_apps_composer: devise
62753db rails_apps_composer: set email accounts
0754893 rails_apps_composer: generators
09104b9 rails_apps_composer: Gemfile
b61cd18 rails_apps_composer: initial commit

Rails Composer set up a Git repository and committed files as it built
the application. We can see a list of Git commits with the
git log –oneline command.

When you move into the rails-devise-roles/ folder, RVM will
automatically begin using the gemset named “rails-devise-roles” because
of the hidden .ruby-gemset and .ruby-version files.

Run bundle install to install the necessary gems in the RVM gemset:

$ bundle install

Let’s try running the application:

$ rails server
=> Booting Puma
.
.
.

Open a web browser window and navigate to
http://localhost:3000/. You’ll see a navigation
bar with “Sign in” and “Sign up” links that implement an authentication
feature using Devise.

Sign in with the email address “user@example.com” and the
password “changeme”. You’ll see a link to the Users page in the
navigation bar that is only seen by administrators. Click the “Users” link and you’ll see a list of users (just one initially). The first user (created by Rails Composer) is automatically assigned
administrator privileges.

Sign out and sign up to create a new account with your own email address
and password. You’ll see a message “Welcome! You have signed up
successfully.” You will not see the “Users” link. Your new account is an ordinary user without administrator
privileges, so you are not allowed to see the list of all users. Notice
the navigation link “Edit account.” It displays a page for account
management where you can change your name, email address, or password.

Sign out and sign in again with the administrative account
“user@example.com” and the password “changeme”. Now you can view the
list of users. You can change the role of any user.

You’ve got a useful starter application. Without Rails Composer, an
experienced developer needs at least an hour or two to set up a similar
starter application (and possibly more time if version updates have
created integration issues).

Examine the application in your editor. Here’s where a starter
application can be useful as a learning tool. Given what you’ve learned
so far, what do recognize as familiar? Every Rails application shares a
similar structure, so you will recognize files such as the Gemfile; and
folders such as app/models/, app/controllers/, and
app/views/. Explore the application. Try to guess the purpose of the
unfamiliar files and code.

If you’re overwhelmed by unfamiliar files and code, try building one of
the simpler starter applications, such as
rails-bootstrap or
rails-devise. Every line of
code is explained in the Capstone Rails Tutorials series
so there’s no mystery code.

As a beginner, you can use Rails Composer for two purposes. You can
quickly build apps that are guaranteed to work and then pick them apart. A “breakable toy” can be a wonderful instrument for learning. Make an
effort to understand everything in the RailsApps example
applications and you’ll gain a solid
understanding of the basic components used in real-world Rails projects. Secondly, start building custom applications based on the Rails Composer
starter applications. By starting with Rails Composer, you’ll skip the
frustrating preliminaries of setting up a front-end framework,
authentication, or authorization and jump right into implementing your
ideas for new features. Rails Composer is often used at hackathons,
where teams race to build interesting applications for a prize, to avoid
the time sink of setting up a basic application.

A final word: Use Rails Composer judiciously. It’s intended to be a tool
for experienced developers who already know how to build starter
applications from scratch using databases, front-end frameworks,
authentication, or authorization, and all the bells and whistles offered
in the Rails Composer options. Use it to pinpoint what you need to
learn, or use it to turbocharge your learning process, but don’t use it
as a crutch to avoid learning the basics. To learn Rails, you must be
able to build every starter application from scratch, without Rails
Composer.

To learn more about Rails Composer, see the Rails
Composer home page and the README for
the Rails Composer
project on GitHub.

 Chapter 26 Version Notes

If you are reading the online edition of the book,
you have the most recent version of the book. If
you’ve gotten your copy of the book elsewhere, you may have an older
version that doesn’t have the newest updates.

You’ll find the version number and release date on the first page of this book (under the book title). Check the learn-rails GitHub repository to find out
if you have the newest version of the book. The README page on the GitHub repo always
shows the most recent version number for the book and the tutorial application.

If you have trouble building the application in this book, and suspect something may be out of date,
you can check the Gemfile in the repo to
see if we’ve changed gems or specified version numbers to avoid
compatibility issues. You can also check the
CHANGELOG,
look at recent commits, and
check the issues to
see the current state of the application.

Here are the changes I’ve made.

26.1 Version 4.2.0

Version 4.2.0 was released August 2, 2017

Additional revisions to accommodate Rails 5.1 form_with.

Add the jquery-rails gem for the jQuery JavaScript library because it was dropped as a default gem from Rails 5.1.

Minor revisions and corrections for clarity.

26.2 Version 4.1.0

Version 4.1.0 was released July 3, 2017

Updated for Rails 5.1 and Ruby 2.4.1.

Removed SimpleForm and replaced with Rails 5.1 form_with.

No need to configure MiniTest for Capybara (included in Rails 5.1).

26.3 Version 4.0.2

Version 4.0.2 was released November 25, 2016

Minor revisions for clarity.

Apple now calls the operating system macOS not Mac OS X.

Updated for Ruby 2.3.2.

26.4 Version 4.0.1

Version 4.0.1 was released November 4, 2016

Fixed broken links.

Removed references to Nitrous.io because Nitrous.io is out of business.

26.5 Version 4.0.0

Version 4.0.0 was released October 31, 2016

Updated for Rails 5.0 and Ruby 2.3.1.

Switch to using Bootstrap instead of Zurb Foundation front-end framework.

Extensive revisions.

26.6 Version 3.1.0

Version 3.1.0 was released March 1, 2016

Switch to using the SendGrid service to send email. Mandrill is no longer offering a free trial.

26.7 Version 3.0.2

Version 3.0.2 was released January 30, 2016

Minor change: ‘email_provider_username’ was ‘mandrill_username’ and email_provider_api_key’ was ‘mandrill_apikey’.

26.8 Version 3.0.1

Version 3.0.1 was released January 29, 2016

Specify version 5.5 of the foundation-rails gem. Foundation 6 is out but Zurb has not yet released documentation for migration from Foundation 5 to 6.

26.9 Version 3.0.0

Version 3.0.0 was released January 14, 2016

Extensive revision throughout the book, and the length of the book increased, so the book is now two books. Book One contains the introductory and self-help chapters and can be read without access to a computer. Book Two contains the step-by-step tutorial and requires use of a computer.

Switch to using the Mandrill service to send email. Previously used Gmail but Google has taken steps to make Gmail more secure and now it can be difficult to send email from a Rails application using Gmail.

Sending mail now requires the method deliver_now instead of deliver. The UserMailer class now inherits from ApplicationMailer.

Updated references to Rails from version 4.2.4 to 4.2.5.

Updated references to Ruby from version 2.2.3 to 2.3.0.

26.10 Version 2.2.2

Version 2.2.2 was released October 30, 2015

In the “Front-End Framework” chapter, updated filename to
1st_load_framework.css.scss from framework_and_overrides.css.scss to
reflect a change in the rails_layout gem.

26.11 Version 2.2.1

Version 2.2.1 was released September 19, 2015

Updated references to Ruby from version 2.2.0 to 2.2.3.

Updated references to Rails from 4.2.0 to Rails 4.2.4.

Updated Visitor model subscribe method for the new Gibbon 2.0 API.

Recommending Cloud9 instead of
Nitrous.io because Nitrous.io is no longer
free.

26.12 Version 2.2.0

Version 2.2.0 was released June 6, 2015

For Amazon customers, added an offer to access the online version or
download a PDF at learn-rails.com.

Google now requires use of OAuth 2.0 for application access to Google
Drive. The implementation is considerably more complex than the previous
implementation using a Gmail address and password. I’ve dropped the
“Spreadsheet Connection” chapter.

Minor clarification in the “Layout and Views” chapter.

26.13 Version 2.1.6

Version 2.1.6 was released March 17, 2015

Remove references to the Thin web server in the “Deploy” chapter.

Correct version number for gem ’sass-rails’ in various Gemfile
listings. Fixes issue 49 and an error
“Sass::SyntaxError - Invalid CSS” when the Foundation front-end
framework is used.

In the “Testing” chapter, the file
test/integration/home_page_test.rb was missing
require ’test_helper’.

Updated “Rails Composer” chapter to describe new options.

Minor improvements and corrections of typos.

26.14 Version 2.1.5

Version 2.1.5 was released March 4, 2015

Use the Ruby 1.9 hash syntax in the validates_format_of :email
statement.

Minor improvements and corrections of typos.

26.15 Version 2.1.4

Version 2.1.4 was released January 3, 2015

Updated references to Ruby from version 2.1.5 to 2.2.0.

Specify the “v0” version of the google_drive gem in the “Spreadsheet
Connection” chapter.

26.16 Version 2.1.3

Version 2.1.3 was released December 25, 2014

Updated references to Rails 4.1.8 to Rails 4.2.0.

26.17 Version 2.1.2

Version 2.1.2 was released December 4, 2014

Released for sale as a Kindle book on Amazon, with new cover art (same
cat, though).

RailsApps Tutorials now named the Capstone Rails
Tutorials.

Updated references to Ruby from version 2.1.3 to 2.1.5.

Updated references to Rails 4.1.6 to Rails 4.1.8 (minor releases with
bug and security fixes).

Removed link to the (now defunct?) Lowdown web
application in the “Plan Your Product” chapter.

Changes to the “Asynchronous Mailing” section of “Send Mail” chapter to
describe Active Job in Rails 4.2.

Minor improvements to the “Dynamic Home Page,” “Deploy,” “Configure,”
“Troubleshoot,” and “Create the Application” chapters.

26.18 Version 2.1.1

Version 2.1.1 was released October 22, 2014

Minor rewriting for clarity.

Updated “Precompile Assets” section of the “Deploy” chapter.

Mentioned explainshell.com in the “Get
Started” chapter.

Mentioned Zeal as a Linux alternative to
Dash.

Recommended book Practicing Rails
by Justin Weiss.

26.19 Version 2.1.0

Version 2.1.0 was released October 12, 2014

Updated references to Ruby from version 2.1.1 to 2.1.3.

Updated references to Rails 4.1.1 to Rails 4.1.6 (minor releases with
bug and security fixes).

Four new chapters:

	“Testing”

	“Rails Composer”

	“Crossing the Chasm”

	“Level Up”

Use ActiveModel instead of the
activerecord-tableless
gem.

In the “Configuration” chapter, add a note to use spaces (not tabs) in
the config/secrets.yml file.

Updated “Gems” chapter to add a troubleshooting note to the “Install the
Gems” section (about errors with the Nokogiri gem).

Added a section on “Multiple Terminal Windows” to the “Create the
Application” chapter.

In the “Get Help When You Need It” chapter, updated the list of
recommended newsletters, replaced rubypair.com
with codermatch.me, and added a section on
code review. Removed reference to defunct Rails Development
Directory.

26.20 Version 2.0.2

Version 2.0.2 was released May 6, 2014

Updated references to Rails 4.1.0 to Rails 4.1.1 (a minor release with a
security fix).

For Nitrous.io users, clarify that “http://localhost:3000/” means the
Preview browser window.

Update “Gems” chapter, section “Where Do Gems Live?” to add more
explanation.

Minor change to code in the “Mailing List” chapter, setting
‘mailchimp_api_key’ explicitly when instantiating Gibbon, for easier
troubleshooting.

26.21 Version 2.0.1

Version 2.0.1 was released April 16, 2014

Minor updates for Rails 4.1.0. Mostly small changes to the “Configure”
and “Front-End Framework” chapters.

Added an explanation that, in the config/secrets.yml file,
domain_name doesn’t have to be kept secret and set as a Unix
environment variable.

Added a hint about passwords that use punctuation marks (plus a
completely irrelevant note about profanitype).

Replaced Rails.application.secrets.gmail_username with
Rails.application.secrets.email_provider_username. Also replaced
gmail_password with email_provider_password. Just trying to make
things a little more generic in case Gmail is not used as a provider.

Added a section explaining the horrid details of the
config.assets.precompile configuration setting in the
config/application.rb file. Please convey my displeasure to those
responsible for subjecting beginners to this travesty.

In the “Deploy” chapter, restored
RAILS_ENV=production rake assets:precompile because Rails 4.1.0 no
longer barfs on this.

Added resources to the “Get Help When You Need It” chapter.

Minor rewriting of the introduction.

26.22 Version 2.0.0

Version 2.0.0 was released April 8, 2014

Updated references to Ruby from version 2.1.0 to 2.1.1.

Updated the book to Rails 4.1. The application name is no longer used in
the config/routes.rb file.

Rails 4.1 changes the app/assets/stylesheets/application.css.scss
file. Updated the “Front-End Framework” chapter. Also expanded the
explanation of the Foundation grid.

In Rails 4.1, configuration variables are set in the
config/secrets.yml file. The Figaro gem is dropped, along with the
config/application.yml file. Updated the “Configure” chapter and
references to configuration variables throughout the book.

In the “Deploy” chapter, changed
RAILS_ENV=production rake assets:precompile to
rake assets:precompile to avoid the error “database configuration does
not specify adapter.”

Updated “The Parking Structure” chapter with comments about “Folders of
Future Importance” that experienced developers often use: test/,
spec/, features/, policies/, and services/. Updated the
“Spreadsheet Connection” chapter to mention service-oriented
architectures (SOA).

Extended the section on “Limitations of Metaphors” in the “Just Enough
Ruby” chapter to include the example of gender when modeling a person.

Minor rewriting for clarity throughout.

26.23 Version 1.19

Version 1.19 was released February 1, 2014

Updated the book to use Foundation 5.0. Foundation 5.0.3 was released
January 15, 2014 (earlier versions 5.0.1 and 5.0.2 were incompatible
with Rails Turbolinks and the Rails asset pipeline). Changed the Gemfile
to remove gem ’compass-rails’ and replace gem ’zurb-foundation’ with
gem ’foundation-rails’. Updated a line in the “Front-End Framework”
chapter for Foundation 5.0:

$ rails generate layout foundation5 --force

The files navigation.html.erb and application.html.erb are
changed for Foundation 5.0. The Bootstrap front-end framework is now independent of Twitter, so I
call it “Bootstrap” not “Twitter Bootstrap.” Revised the chapter “Just Enough Ruby” to incorporate suggestions from
technical editor Pat Shaughnessy. Revised the chapter “Request and Response” to incorporate suggestions
from technical editor Kirsten Jones. Minor rewriting for clarity throughout.

26.24 Version 1.18

Version 1.18 was released January 10, 2014

Updated references to Ruby from version 2.0.0 to 2.1.0. Changed one line in the “Front-End Framework” chapter to accommodate a
change in the rails_layout gem version 1.0.1. The command was:

$ rails generate layout foundation4 —force

Changed to:

$ rails generate layout:install foundation4 —force

Updated the “Configure” chapter to add ActionMailer configuration values
to the file config/environments/development.rb.

26.25 Version 1.17

Version 1.17 was released December 21, 2013

Updated Rails version from 4.0.1 to 4.0.2 .

Changed Gemfile to remove gem ’compass-rails’, ’> 2.0.alpha.0’ and
replace it with gem ’compass-rails’, ’> 1.1.2’. The 2.0.alpha.0
version was yanked from the RubyGems server. The compass-rails gem is
needed for Foundation 4.3. It will not be needed for Foundation 5.0.

Changed Gemfile to replace gem ’zurb-foundation’ with
gem ’zurb-foundation’, ’> 4.3.2’. Foundation 5.0 will require
gem ’foundation-rails’ but we can’t use it until an incompatibility with Turbolinks is
resolved. So we will stick with Foundation 4.3.2 for now.

Revised code in the “Analytics” chapter. Using ready page:change
instead of page:load to accommodate Turbolinks. Updated
the segmentio.js file to use a new tracking script from Segment.io. Updated instructions for setting up Google Analytics tracking on
Segment.io. Added concluding paragraphs “Making Mr. Kadigan Happy” to
the “Analytics” chapter.

Minor clarification in the “Front-End Framework” chapter to explain that
the navigation bar won’t show a dropdown menu until the next chapter,
when we add navigation links.

Minor clarification in the “Spreadsheet Connection” chapter to explain
that Google may block access if you attempt access from a new and
different computer (including Nitrous.io).

Added cat names in the “Credits and Comments” chapter.

Revised “Getting Help” chapter and added “Version Notes” chapter.

Minor clarifications, plus fixes for various typos and insignificant
errors.

 Chapter 27 Credits and Comments

Was the book useful to you? Follow
@rails_apps on Twitter and tweet some praise. I’d love to know you were helped out by the tutorial.

You can find me on Facebook or Google+. I’m happy to connect if you want to stay in touch.

If you’d like to recommend the book to others, the landing page for the book is here:

	http://learn-rails.com/learn-ruby-on-rails.html

I’d love it if you mention the book online, whether it is a blog post, Twitter, Facebook, or online forums. Recommending the book with a link makes it easier for people to find the book.

27.1 Credits

The book was created with the encouragement, financial support, and editorial assistance of hundreds of people in the Rails community.

Daniel Kehoe wrote the book and implemented the application.

27.1.1 Kickstarter

Thank you to contributors to two Kickstarter campaigns, for the first edition of the book and for the revision for Rails 5.0.

	Learn Ruby on Rails

	Learn Ruby on Rails 5

27.1.2 Financial Backers for the First Edition

The following individuals provided financial contributions of over $50 to help launch the book. Please join me in thanking them for their encouragement and support.

Al Zimmerman, Alan W. Smith, Alberto A. Colón Viera, Andrew Terry, Avi Flombaum, Brian Hays, Charles Treece, Dave Doolin, Denzil Villarico, Derek Rockwell, Eito Katagiri, Evan Sparkman, Frank Castle, Fred Dixon, Fred Schoeneman, Gant Laborde, Gardner Monks, Gerard de Brieder, GoodWorksOnEarth.org, Hanspeter Leupin, Harald Lazardzig, Harsh Patel, James Bond, Jared Koumentis, Jason Landry, Jeff Whitmire, Jesse House, Joe Wilmoth Jr., John Shannon, Joost Baaij, Juan Cristobal Pazos, Kathleen Sidenblad, Laird Hayward, Logan Hasson, Ludovic Kuty, Mark Gilbert, Matt Esterly, Mike Gilbert, Niko Roberts, Norman Cohen, Paul Philippov, Robert Nadar, Rogier Hof, Ross Kinney, Ruben Calzadilla, Stephane Moreau, Susan Wilson, Sven Fuchs, Thomas Nitsche, Tom Michel, Youn Shin Kang, Yuen Lock

27.1.3 Technical Editors

Rails and Ruby experts are very busy. I am very grateful for the assistance I received from my colleagues for the technical review of individual chapters.

	Kirsten Jones, reviewed the chapter “Request and Response”

	Pat Shaughnessy, author of Ruby Under a Microscope, reviewed the chapter “Just Enough Ruby”

	Noel Rappin, author of Rails Test Prescriptions, reviewed chapters 1-7, and the “Testing” chapter

	Aaron Sumner, author of Everyday Rails Testing with RSpec, reviewed the “Testing” chapter

	Ken Collins reviewed the “Testing” chapter

Buy their books. I recommend them.

27.1.4 Editors and Proofreaders

Dozens of volunteers offered corrections and made suggestions, from fixing typos to advice about organizing the chapters.

Alberto Dubois Ribó, Alex Finnarn, Alex Zielonko, Alexandru Muntean, Alexey Dotokin, Alexey Ershov, André Arko, Andreas Basurto, Ben Swee, Brandon Schabel, Cam Skene, Daniella Zimmermann, Dapo Babatunde, Dave Levine, Dave Mox, David Kim, Duany Dreyton Bezerra Sousa, Erik Trautman, Erin Nedza, Flavio Bordoni, Fritz Rodriguez Jr, Hendri Firmana, Ishan Shah, James Hamilton, Jasna Vukovic, Jeremy Schneider, Joanne Daudier, Joel Dezenzio, Jonah Ruiz, Jonathan Lai, Jonathan Miller, Jordan Stone, Joreal Whitfield, Josh Morrow, Joyce Hsu, Julia Mokus, Julie Hamwood, Jutta Frieden, Laura Pierson Wadden, Marc Ignacio, Mark D. Blackwell, Mark Everhart, Michael Wong, Miguel Herrera, Mike Janicki, Miran Omanovic, Neha Jain, Norman Cohen, Oana Sipos, Peter Rangelov, Richard Afolabi, Robin Paul, Roderick Silva, Sakib Ash, Sebastian Lobato Genco, Silvia Obajdin, Stas Sușcov, Stefan Streichsbier, Sven Fuchs, Tam Eastley, Tim Goshinski, Timothy Jones, Tom Connolly, Tom Michel, Tomas Olivares, Verena Brodbeck, Will Schive, William Yorgan, Zachary Davy

27.1.5 Photos

Images provided by the lorempixel.com service are used under the Creative Commons license. Visit the Flickr accounts of the photographers to learn more about their work:

	photo of a white cat by Tomi Tapio

	photo of a cat by Steve Garner

	photo of a cat by Ian Barbour

The photo of a fluffy white cat by Tomi Tapio is used in the application.

27.2 Comments

I regularly update the book. Your comments and suggestions for
improvements are welcome.

Feel free to email me directly at
daniel@danielkehoe.com.

Are you stuck with code that won’t work? Stack Overflow
provides a question-and-answer forum for readers of this book. Use the
tag “learn-ruby-on-rails” or “railsapps” when you post your question.

Found a bug in the tutorial application? Please create an
issue on GitHub.

Table of Contents

		Frontmatter

	Version Check, Videos, and More

	Introduction

	Get Help When You Need It

	Accounts You May Need

	Get Started

	Create the Application

	The Parking Structure

	Time Travel with Git

	Gems

	Configure

	Static Pages and Routing

	Request and Response

	Dynamic Home Page

	Troubleshoot

	Just Enough Ruby

	Layout and Views

	Front-End Framework

	Add Pages

	Contact Form

	Send Mail

	Mailing List

	Deploy

	Analytics

	Testing

	Rails Composer

	Version Notes

	Credits and Comments

OEBPS/Images/image00370.jpeg

OEBPS/Images/image00369.jpeg

OEBPS/Images/image00368.jpeg

OEBPS/Images/image00367.jpeg

OEBPS/Images/image00366.jpeg

OEBPS/Images/image00365.jpeg

OEBPS/Images/cover00379.jpeg

OEBPS/Images/image00378.jpeg

OEBPS/Images/image00377.jpeg

OEBPS/Images/image00376.jpeg

OEBPS/Images/image00375.jpeg

OEBPS/Images/image00374.jpeg

OEBPS/Images/image00373.jpeg

OEBPS/Images/image00372.jpeg

OEBPS/Images/image00371.jpeg

